請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Chih-Chen Liao | en |
| dc.contributor.author | 廖枳榛 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:50:16Z | - |
| dc.date.available | 2009-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | 1. Logemann, J.A., Pauloski, B.R., Rademaker, A.W., Lazarus, C.L., Mittal, B., Gaziano, J., Stachowiak, L., MacCracken, E., Newman, L.A., Xerostomia: 12-month changes in saliva production and relationship to perception and performance of swallow function, oral intake, and diet after chemoradiation. Head & Neck.2003; 25(6)432-7
2. Munter, M.W., Karger, C.P., Hoffner, S.G., Hof, H., Thilmann, C., Rudat, V., Nill, S., Wannenmacher, M., Debus, J., Evaluation of salivary gland function of salivary gland intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Clinical investigation. 2004; 58(1): 175-184 3. Ben-Aryeh, H., Serouya, R., Kanter, Y., Szargel, R., Laufer, D. Ora health and salivary composition in diabetic patients. Journal of Oral Diabetes and its Complications. 1993; 7: 57-62 4. Tran, S. D., Wang, J., Bandyopadhyay, B.C., Redman, R. S., Dutra, A., Pak, E., Swaim, W.D., Gerstenhaber, J.A., Bryant, J.M., Zheng, C., Goldsmith, C.M., Kok, M.R., Wellner, R.B., Baum, B.J., Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue engineering. 2005; 11(1-2): 172-81. 5. Aframian, D.J., David, R., Ben-Bassat H, Shai, E., Deutsch, D., Baum, B.J., Palmon, A., Characterization of murine autologous salivary gland graft cells: a model for use with an artificial salivary gland, Tissue engineering. 2004; 10(5-6): 914-20. 6. Hu, W.J., Eaton, J.W., Ugarova, T.P., Tang, L., Molecular basis of biomaterial-mediated foreign body reactions, Blood, 2001; 98: 1231-1238 7. Hench, L. L., Biomaterials: a forecast for the future, Biomaterials 1998; 19: 1419-1423 8. Fulzele, S.V., Satturwar, P.M., Dorle, A.K., Study of the biodegradation and in vivo biocompatibility of novel Biomaterials, European Journal of Pharmaceutical Sciences, 2003; 20: 2053–61 9. James, S.J., Pogribna, M., Miller, B.J., Bolon, B., Muskhelishvili, L., Characterization of cellular response to silicone implants in rats: implications for foreign-body carcinogenesis. Biomaterials. 1997; 18(9): 667-75 10. Shigemasa, Y., Matsuura, H., Sashiwa, H., Saimoto, H., Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetyllation in chitin. Int J Biol. Macromol. ,1996; 18: 237-242. 11. Koyano, T., Koshizaki N., Umehara, H., Nagura, M., Minoura, N., Surface states of PVA/chitosan blended hydrogels. Polymer. 2000; 41: 4461-4465. 12. Tomihata K., Yoshito, I., In vitro and in vivo degradation of films of chitin and its deacetylated deriveative. Biomaterials 1997; 18:567-575. 13. Suzuki, M., Itoh, S., Yamaguchi, I., Takakuda, K., Kobayashi, H., Shinomiya, K., Tanaka, J., Tendon Chitosan Tubes Covalently Coupled With Synthesized Laminin Peptides Facilitate Nerve Regeneration In Vivo, Journal of Neuroscience Research 72:646–659 (2003) 14. Nussbaum, D. A., Gailloud, P., and Murphy, K., A Review of Complications Associated with Vertebroplasty and Kyphoplasty as Reported to the Food and Drug Administration Medical Device Related Web Site. J Vasc Interv Radiol. 2004; 15: 1185-1192. 15. Peppas, N. A., Hydrogels in medicine and Pharmacy, VolⅡ Polymers CRC Press,1998 16. Wichterle, O., Lim, D., Hydrophilic gels in biologic use, Nature 1960; 185: 117. 17. Sakurada, I., Polyvinyl Alcohol Fibers, Barsel Dekker, Inc. New York and Basel, 1985. 18. Laurent, A., Wassef, M., Saint, Maurice, J.P., Namur, J., Pelage, J.P., Seron, A., Chapot, R., Merland, J.J., Arterial Distribution of Calibrated Tris-Acryl Gelatin and Polyvinyl Alcohol Microspheres in a Sheep Kidney Model, Investigative Radiology, 2006; 41(1): 8-14. 19. DeMerlis, C.C., Schoneker, D.R., Review of the oral toxicity of polyvinyl alcohol (PVA). Food ChemToxical, 2003 Mar; 41 (3) :319-26. 20. Avery, J. K., Oral development and histology, 3rd, p302-330. 21. Pedersen, A.M., Bardow, A., Jensen, S.B., Nauntofte, B., Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Diseases .2002; 8: 117–129 22. Mosmann,T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods. 1983; 65: p55-63 23. Lobner, D., Comparison of the LDH and MTT assay for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods, 2002; 96: 147-152. 24. GARCIA-MORATO CASTANO, V., Colorimetric method of determination of blood amylase Arch Med Exp. 1953 ; 16 (4) :513-21. 25. Van der Maarel, M.J., van der Veen, B., Uitdehaag, J.C., Leemhuis, H., Dijkhuizen, L., Properties and applications of starch-converting enzymes of the α-amylase family, J Biotechnol., 2002; 94: 137–155, 26. Whelan, W.J., Roberts, P.J., Action of salivary alpha-amylase on amylopectin and glycogen Nature. 1952 Nov 1; 170 (4331 ) :748-9. 27. Fujita-Yoshigaki, J., Tagashira , A., Yoshigaki, T., Furuyama, S., Sugiya, H., A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules. Cell and tissue Res., 2005; 320(3): 455-64 28. Batzri, S., Amsterdam, A., Selinger, Z., Ohad, I., Schramm, M., Epinephrine-induced vacuole formation in parotid gland cells and its independence of the secretory process. Proc. Natl. Acad. Sci., 1971; 68(1): 121-3. 29. Yago, M.D., Mata, A.D., Manas, M., Singh, J., Effect of extracellular magnesium on nerve-mediated and acetylcholine- evoked in vitro amylase release in rat parotid gland tissue. Exp Physiol., 2002 May; 87(3):321-326. 30. Nezu, A., Morita, T., Tanimura, A., Tojyo, Y., Comparison of agonist-induced Ca2+ responses in rat submandibular acini and ducts. Arch Oral Biol. 2005 Jun 50 ( 6 ) :585-92. 31. Lin, S.J., Jee, S.H., Hsaio, W.C., Lee, S.J., Young, T.H., Formation of melanocyte spheroids on the chitosan-coated surface.Biomaterials. 2005 Apr;26(12):1413-22. 32. Chen, M.H., Chen, R.S., Hsu, Y.H., Chen, Y.J., Young, T.H., Proliferation and phenotypic preservation of rat parotid acinar cells. Tissue Eng. 2005 Mar-Apr;11(3-4):526-34. 33.Chen, M.H., Hsu, Y.H., Lin, C.P., Chen, Y.J., Young, T.H. Interactions of acinar cells on biomaterials with various surface propertiesJ Biomed Mater Res A. 2005 Aug 1;74(2):254-62. 34.Okura, M., Shirasuna, K., Hiranuma, T., Yoshioka, H., Nakahara, H., Aikawa, T., Matsuya, T., Characterization of growth and differentiation of normal human submandibular gland epithelial cells in a serum-free medium. Differentiation, 1993 Sep;54(2):143-53. 35. Fujita-Yoshigaki, J., Tagashira, A., Yoshigaki, T., Furuyama, S., Sugiya, H., A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules.Cell Tissue Res. 2005 Jun ; 320 (3):455-64, 2005. 36. Kelm, J.M., Timmins, N.E., Brown, C.J., Fussenegger, M., Nielsen, L.K., Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003 Jul 20;83(2):173-80. 37. Yamauchi, N., Yamada, O., Takahashi, T., Imai, K., Sato, T., Ito, A., Hashizume, K., A three-dimensional cell culture model for bovine endometrium: regeneration of a multicellular spheroid using ascorbate. Placenta. 2003 Feb-Mar;24(2-3):258-69. 38. Abu-Absi, S.F., Friend, J.R., Hansen, L.K., Hu, W.S., Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002 Mar 10;274(1):56-67. 39. Bernfeld, P., Amylase αandβ. Methods Enzymol 1:149-158 40. Gitlitz, P.H., Frings, C.S., Interferences with the starch-iodine assay for serum amylase activity, and effects of hyperlipemia. Clin Chem. 1976 Dec;22(12):2006-9. 41. Larina, O., Thorn, P., Ca2+ dynamics in salivary acinar cells: distinct morphology of the acinar lumen underlies near-synchronous global Ca2+ responses. J Cell Sci. 2005 Sep 15; 118: 4131-9. 42. Sun, T., Zhu, J., Yang, X., Wang, S., Growth of miniature pig parotid cells on biomaterials in vitro. Arch Oral Biol. 2006 May;51(5):351-8. 43. Lin, S.J., Jee, S.H., Hsaio, W.C., Yu, H.S., Tsai, T.F., Hsu, C.J., Young, T.H., Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials. 2006 Mar ; 27 (8) : 1462-9. 44. Beningo, K.A., Dembo, M., Wang, Y-L, Proc. Natl. Acad. Sci., 2004; 101:18024-18029 45. Nyberg, S.L., Hardin, J., Amiot, B., Argikar, U.A., Remmel, R.P., Rinaldo, P., Large-Scale Formation of Porcine Hepatocyte Spheroids in a Novel Spheroid Reservoir Bioartificial Liver, Liver Transplantation, 2005; 11(8): 901-910 46. Boxberger, H. j., Sessler, M. j., Maetzel, B., Meyer, T. F., High polarized primary epithelial cells from human nasopharynx grown as spheroid-like vesicles, European Journal of cell biology, 1993; 62: 140-151 47. Yoshida, S., Shimmura, S., Shimazaki, J., Shinozaki, N., Tsubota, K., Serum-Free Spheroid Culture of Mouse Corneal Keratocytes, Invest Ophthalmol Vis Sci., 2005; 46,(5); 1653-1658 48. Keller G. M., In vitro differentiation of embryonic stem cells, Curr Opin Cell Biol. 1995; 7: 862-869 49. Matsuzaki, T., Suzuki, T., Koyama, H., Tanaka, S., Takata, K., Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell Tissue Res.,1999 Mar ; 295(3): 513-21. 50. Hashimoto, S., Ochiai, S., Muramatsu, T., Shimono, M., Tight junctions in the rat parotid gland. Eur J Morphol, 2000; 38(4): 263-7. 51. Peppi, M., Ghabriel, M.N., Tissue-specific expression of the tight junction proteins claudins and occludin in the rat salivary glands. J Anat. 2004 Oct;205(4):257-66 52. Denker, Bradley, M., Sanjay, K. N., Molecular structure and assembly of the tight junction, Am. J. Physiol. 1998; 274:F1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32453 | - |
| dc.description.abstract | 在組織工程中的研究常利用生醫材料作為細胞的載體,因此探討細胞與生醫材料的相互作用是相當重要的課題,由過去研究已知生醫材料的親疏水性對於細胞的生長有巨大的影響,因此在生醫材料的選擇上,親疏水性是一個相當重要的考慮因素,本研究的目的在於探討腮腺細胞在高親水性材料聚乙烯醇和一般培養皿上的生長情形,利用免疫螢光染色反應鑑定細胞的特有功能性表現,並使用光學顯微鏡及掃描式電子顯微鏡觀察細胞型態,加以比較。
研究結果發現當腮腺細胞在聚乙烯醇上培養,細胞並不會貼附在基材表面,而是聚集成團並懸浮在培養液中,掃描式電子顯微鏡觀察發現培養在聚乙烯醇上的腮腺細胞,在剛形成球團的初期,細胞與細胞間仍保有一些距離,可以輕易分辨出單顆細胞,長時間培養在聚乙烯醇後,細胞與細胞被細胞間基質所覆蓋,造成細胞融合現象,使球團表面無法分辨單顆細胞。當腮腺細胞在聚乙烯醇上聚集成球團時,免疫螢光染色可以發現具有腮線細胞特有的功能表現澱粉酶之存在,細胞在接受乙醯膽鹼的刺激時,聚集成團的細胞比在一般培養皿上貼附的細胞,更容易接受刺激而且會產生較大的酵素活性反應。 實驗結果亦發現,若將在聚乙烯醇材料上聚集成團的細胞再種回一般培養皿上時,細胞會從球團中慢慢爬出,繼續生長並表現澱粉酶功能,因此可以確定利用聚乙烯醇的高親水特性使細胞經碰撞,自我組裝成團狀,團狀的細胞較類似生物體內的立體狀態,故可表現較佳的細胞功能性,根據以上結果顯示聚乙烯醇可作為保存細胞使細胞較近似生物體內的立體結構並提高細胞功能的生醫材料,可作為唾液腺再生的應用。 | zh_TW |
| dc.description.abstract | Biomaterials are usually applied for growing of cells in tissue engineering. It is very important to understand the interactions of cells with biomaterials. Upon this, hydrophilicity of biomaterials is one of the most important factors in the effects of cell-surface interactions. The purpose of this reserch was to investigate the behaviors of parotid acinar cells on polyvinyl alcohol which is with high hydrophilicity.
Acinar cells were cultured on PVA, and tissue culture plates (TCPS) were used as control group. Functional expression of α-amylase in acinar cells was identified with immuno-fluorescent staining technique. Cell morphology on PVA and TCPS were investigated with light microscopy and scanning electron microscopy (SEM). Our results demonstrated that in contrast to of attachment of cells on TCPS, cells were suspended and aggregated as spheres on PVA. In the initial stage of cell sphere formation, single cell interface could be identified with SEM. However, after cultured on PVA for a long period, the cell-cell interface was covered with extracellular matrix and cells were hard to identify single cell interface. Immno-fluorescent staining of α-amylase revealed the functional activities of aggregated acinar cells on PVA. Additionally, when receiving the acetylcholine stimulation, these cell aggregates were with higher functional activities compared to those on TCPS. When aggregated cells on PVA were transferred to TCPS, migration from the aggregates and reattachment on TCPS were evident and cells were also with α-amylase expression. Our results demonstrated that acinar cells on high hydrophilic biomaterial PVA could be self-assembled as three-dimensional spheres which are more resemble the in vivo state and with better function. We proposed that PVA might be applied for preserving the acinar cells in three-dimensional cell sphere which are more similar to the biological condition in vivo with better function for salivary gland regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:50:16Z (GMT). No. of bitstreams: 1 ntu-95-R93548052-1.pdf: 7508274 bytes, checksum: 3c81732bea6ca43a0f999bdedad698ef (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要 V Abstract VIII 圖表目錄 Ⅸ 第一章 研究背景與動機 1 第二章 文獻回顧 2 2-1 生物材料簡介 2 2-2 聚乙烯醇(polyvinyl alcohol, PVA ) 4 2-3 唾液腺簡介 5 2-4細胞活性的測試 6 2-5澱粉酶 6 2-6 神經傳導物質對唾液分泌的影響 7 第三章 材料與方法 9 3-1儀器 9 3-2 材料製備 13 3-3 細胞培養 13 3-4 細胞特性與功能檢測 13 3-5 觀察細胞在聚乙烯醇( PVA)和培養盤( TCPS)上的形態 15 3-6 細胞球團的觀察 15 3-7 掃描式電子顯微鏡的觀察 16 3-8 細胞團染色觀察 16 3-9 細胞團冷凍切片觀察 16 3-10 MTT分析---細胞活性分析 17 3-11 無血清培養 17 3-12 澱粉酶活性分析 18 3-13 澱粉酶活性校正曲線 19 3-14 乙醯膽鹼( Acetylcholine, ACh)刺激實驗 19 3-15 懸浮細胞球團再貼附實驗 19 第四章 結果與討論 20 4-1細胞在材料上形態之觀察 20 4-1-1 細胞取得培養 20 4-1-2 細胞免疫染色觀察 20 4-1-3 細胞型態觀察 21 4-1-4 細胞球數計算與觀察 23 4-1-5 SEM觀察--細胞球團 24 4-1-6 細胞球免疫螢光染色 25 4-1-7 細胞團切片免疫螢光染色處理 26 4-2 細胞球團的性質與比較 27 4-2-1 細胞團活性觀察比較 27 4-2-2 無血清培養(飢餓)實驗 28 4-2-3 乙醯膽鹼(ACh)刺激實驗 29 4-3 細胞團再貼附實驗 31 第五章 結論 32 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 腮腺細胞 | zh_TW |
| dc.subject | 唾液腺 | zh_TW |
| dc.subject | 聚集 | zh_TW |
| dc.subject | 聚乙烯醇 | zh_TW |
| dc.subject | aggregate | en |
| dc.subject | salivary gland | en |
| dc.subject | polyvinylalcohol | en |
| dc.subject | acinar cells | en |
| dc.title | 腮腺細胞在聚乙烯醇上的行為表現 | zh_TW |
| dc.title | Behaviors of Salivary Acinar Cells on Poly-Vinyl Alcohol | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳敏慧(Min-Huey Chen) | |
| dc.contributor.oralexamcommittee | 宋信文(HSING-WEN SUNG),王盈錦(Yng-Jiin Wang) | |
| dc.subject.keyword | 腮腺細胞,唾液腺,聚乙烯醇,聚集, | zh_TW |
| dc.subject.keyword | acinar cells,salivary gland,polyvinylalcohol,aggregate, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
