請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金 | |
| dc.contributor.author | Hsin-Hui Shu | en |
| dc.contributor.author | 舒馨慧 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:50:04Z | - |
| dc.date.available | 2011-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | 參考文獻
Aggarwal, S. K., and MacKinnon, R.(1996). Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169-1177. Ahern, C.A., and Horn, R. (2004). Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol.123, 205–216. Ahern, C.A., and Horn, R. (2005).Focused electric field across the voltage sensor of potassium channels. Neuron 48,25-29. Armstrong, C.M. (1981). Sodium channels and gating currents. Physiol. Rev. 61, 644–682. Auld, V.J., A.L. Goldin, D.S. Krafte, J. Marshall, J.M. Dunn, W.A. Catterall, H.A. Lester, N. Davidson, and R.J. Dunn.(1988). A rat brain Na+ channel α subunit with novel gating properties. Neuron 1:449–461. Backx, P.H., D.T. Yue, J.H. Lawrence, E. Marban, and G.F. Tomaselli. (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science (Wash. DC). 257:248–251. Baker, O. S., Larsson, H. P., Mannuzzu, L. M., Isacoff, E. Y (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 20, 1283-1294. Barchi, R.L. (1995). Molecular pathology of the skeletal muscle sodium channel. Annu. Rev. Physiol. 57:355–385. Benitah, J.P., Chen, Z., Balser, J.R., Tomaselli, G.F., Marban, E. (1999) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J. Neurosci. 19:1577-1585. Bezanilla, F., Armstrong, C.M.,(1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol.70,549-566. Cannon, S.C. (1996). Sodium channel defects in myotonia and periodic paralysis. Annu. Rev. Neurosci. 19, 141–164. Catterall, W.A. (1986). Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985. Catterall, W.A. (2001). A 3D view of sodium channels. Nature 409,988-991. Cha, A., Ruben, P.C., George, A.L., Jr., Fujimoto, E., and Bezanilla, F. (1999a). Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22, 73–87. Cha, A., Snyder, G. E., Selvin, P. R., Bezanilla, F. (1999b) Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809-813. Chahine, M., A.L. George,Jr., M. Zhou, S.Ji, W. Sun, R.L. Barchi, and R. Horn. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron. 12:281-294. Chanda, B., and F. Bezanilla. (2002). Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120:629–645. Chen, L.Q., Santarelli, V., Horn, R., and Kallen, R.G. (1996). A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen,S. L., Chait, B. T.,MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77. Elinder, F., Mannikko, R., Larsson, H. P. (2001) S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol 118, 1-10. Gandhi, C. S., Isacoff, E. Y. (2002) Molecular models of voltage sensing. J Gen Physiol 120, 455-463. Goldin, A.L., Snutch, T., Lubbert, H., Dowsett, A., Marshall, J., Auld, V., Downey, W., Fritz, L.C., Lester, H.A., Dunn, R., Catterall, W.A., and Davidson, N. (1986). Messenger RNA coding for only the α subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 83, 7503–7507. Gurdon, J. B., Lane, C. D., Woodland, H. R., Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177-182. Guy, H.R., and Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 508, 508–512. Hartshorne, R.P., and Catterall, W.A. (1981). Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. USA 78, 4620–4624. Hartshorne, R.P., Messner, D.J., Coppersmith, J.C., and Catterall, W.A. (1982). The saxitoxin receptor of the sodium channel from rat brain: evidence for two nonidentical beta subunits. J. Biol. Chem. 257, 13888–13891. Heinemann, S.H., Terlau, H., Stu¨ hmer, W., Imoto, K., and Numa, S. (1992). Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443. Hille, B. (1992) Ionic channels of excitable membranes, Ed. 2. Sinauer Associates, Sunderland,MA. Hirschberg, B., Rovner, A., Lieberman, M., and Patlak, J. (1995). Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068. Hodgkin, A. L., and Huxley A. F.(1952). A quantitative description of membrane current and its application to induction and excitation in nerve. J Physiol 117,500-544. Hoffman, E.P., F. Lehmann-Horn, and R. Rüdel.(1995). Overexcited or inactive: ion channels in muscle disease. Cell. 80:681–686. Holmgren, M., Jurman, M. E., Yellen, G. (1996) N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol 108, 195-206. Hoshi, T., Zagotta, W. N., Aldrich, R. W.(1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547-56. Isacoff, E.Y., Jan, Y.N.,and Jan, L.Y.(1991) Putative receptor for the cytoplasmic inactivation gate in the Shaker K channel. Nature 353,86-90. Isom, L.L., De Jongh, K.S., Patton, D.E., Reber, B.F.X., Offord, J., Charbonneau, H., Walsh, K., Goldin, A.L., and Catterall, W.A. (1992). Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256, 839–842. Isom, L.L., Ragsdale, D.S., De Jongh, K.S., Westenbroek, R.E., Reber, B.F.X., Scheuer, T., and Catterall, W.A. (1995). Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif. Cell 83, 433–442. Jerng, H. H., Covarrubias, M. (1997) K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Biophys J 72, 163-174. Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002a). Crystal structure and mechanism of a calcium-gated potassium channel. Nature.417:515–522. Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002b). The open pore conformation of potassium channels. Nature.417:523–526. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., MacKinnon, R. (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33-41. Jiang, Y., Ruta, V., Chen, J., Lee, A., MacKinnon, R. (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42-48. Kellenberger, S., Scheuer, T., and Catterall, W.A. (1996). Movement of the Na+ channel inactivation gate during inactivation. J. Biol. Chem. 271, 30971–30979. Kuhn, F.J.P, and Greef, N.G.(1999) Movement of voltage sensor S4 in somain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J Gen Physiol 114,167-183. Kuo, C.C.,and Bean, B.P.,(1994) Sodium channels must deactivate to recovery from inactivation. Neuron. 12, 819-829. Laine, M., Lin, M. C., Bannister, J. P., Silverman, W. R., Mock, A. F., Roux, B.,and Papazian, D. M. (2003) Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467-481. Lecar, H., and H.P. Larsson. (1997) Theory of S4 motion in voltage-gated channels. Biophys. J. 72,341a. Liman, E. R., Hess, P., Weaver, F., Koren, G. (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353, 752-756. Li-Smerin, Y., Hackos, D. H., Swartz, K. J. (2000) alpha-helical structural elements within the voltage-sensing domains of a K(+) channel. J Gen Physiol 115, 33-50. Liu, Y., Jurman, M. E., Yellen, G..(1996). Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859-867. Logothetis, D. E., Movahedi, S., Satler, C., Lindpaintner, K., Nadal-Ginard, B. (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron 8, 531-540. McCollum, I.J., Vilin, Y.Y., Spackman, E., Fujimoto, E., Ruben, P.C. (2003) Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS Lett. 552:163-169. McPhee, J.C., Ragsdale, D.S., Scheuer, T., and Catterall, W.A. (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc. Natl. Acad. Sci. USA. 91:12346-12350. McPhee, J.C., Ragsdale, D.S., Scheuer, T., and Catterall, W.A. (1995). A critical role for transmembrane segment IVS6 of the sodium channel α subunit in fast inactivation. J. Biol. Chem. 270, 12025–12034. McPhee, J.C., Ragsdale, D., Scheuer, T., and Catterall, W.A. (1998). A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α subunit in fast inactivation. J. Biol. Chem. 273, 1121–1129. Mitrovic, N., George, A.L. Jr., Horn, R. (2000) Role of domain 4 in sodium channel slow inactivation. J. Gen. Physiol. 115:707-718. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188-192. O’Reilly, J.P., Wang, S.Y., Wang, G.K.(2000) A point mutation in domain 4- segment 6 of the skeletal muscle sodium channel produces an atypical inactivation state. Biophys. J. 78:773-784. O’Reilly, J.P., Wang, S.Y., Wang, G.K.(2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Nav1.4 sodium channels. Biophys. J. 81:2100-2111. Papazian, D. M., Timpe, L. C., Jan, Y. N., Jan, L. Y. (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305-310. Papazian, D. M., Shao, X. M., Seoh, S. A., Mock, A. F., Huang, Y., Wainstock, D. H. (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293-1301. Scheuer, T., V.J. Auld, S. Boyd, J. Offord, R. Dunn, and W.A. Catterall. (1990). Functional properties of rat brain sodium channels expressed in a somatic cell line. Science (Wash. DC). 247:854–858. Schonherr, R., Mannuzzu, L. M., Isacoff, E. Y., Heinemann, S. H. (2002) Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron 35, 935-949. Schoppa, N. E., McCormack, K., Tanouye, M. A., Sigworth, F. J. (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712-5. Seoh, S. A., Sigg, D., Papazian, D. M., Bezanilla, F. (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159-1167. Shih, T. M., Goldin, A. L. (1997) Topology of the Shaker potassium channel probed with hydrophilic epitope insertions. J Cell Biol 136, 1037-1045. Smith-Maxwell, C. J., Ledwell, J. L., Aldrich, R. W. (1998) Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol 111, 421-39. Smith, M.R., and Goldin, A.L. (1997). Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73, 1885–1895. Sokolov, S., Scheuer,T., and Catterall, W.A.(2005) Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47,183-189. Starace, D. M., Bezanilla, F. (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol 117, 469-90. Starace, D. M., Bezanilla, F. (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548-453. Striessnig, J., Glossmann, H., and Catterall, W.A. (1990). Identification of a phenylalkylamine binding region within the a1 subunit of skeletal muscle Ca2+ channels. Proc. Natl. Acad. Sci. USA 87, 9108–9112. Stühmer, W., F. Conti, H. Suzuki, X. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature (Lond.). 339:597–603. Terlau, H., S.H. Heinemann, W. Stühmer, M. Pusch, F. Conti, K. Imoto, and S. Numa. (1991). Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293:93–96. Tiwari-Woodruff, S. K., Schulteis, C. T., Mock, A. F., Papazian, D. M. (1997) Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 72, 1489-1500. Tiwari-Woodruff, S. K., Lin, M. A., Schulteis, C. T., Papazian, D. M. (2000) Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol 115, 123-138. Tombola, F., Pathak, M.M., and Isacoff, E.Y. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388. Vedantham, V., Cannon, S.C. (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na+ channels. Biophys. J. 78:2943-2958. Vilin, Y.Y., Fujimoto, E., Ruben, P.C. (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys. J. 80:2221-2230. West, J. W., D.E. Patton, T. Scheuer, Y. Wang, A.L. Goldin, and W.A. Catterall. (1992). A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. USA. 89:10910–10914. Yang, N., and Horn, R. (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213-218. Yang, N., George, A. L., Jr., and Horn, R.(1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113-22. Yang, Y.C., and Kuo, C.C. (2003) The position of the fourth segment of domain 4 determines status of the inactivation gate in Na+ channels. J. Neurosci. 23,4922-4930. Yang, Y.C., and Kuo, C.C. (2005) An inactivation stabilizer of the Na+ channel Acts as an opportunistic pore blocker modulated by external Na+. J. Gen. Physiol. 125,465-481. Yusaf, S. P., Wray, D., Sivaprasadarao, A. (1996) Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch 433, 91-97. Zagotta, W. N., Aldrich, R. W. (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol 95, 29-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32450 | - |
| dc.description.abstract | 中文摘要
大鼠腦 IIA型鈉離子通道是一種電位開關性的離子通道,由四個相似的結構區域所組成。每個區域包含六條穿膜蛋白(S1~S6),在S4上因為被發現有規則分布的鹼性胺基酸以α螺旋(α-helix)的方式排列,因此被認為其和感測電場的變化有關,且可隨膜電位之變化而運動,是目前公認的電位感測器。近年對於S4的運動方式主要有兩種說法:第一種是S4利用旋轉並往細胞外位移的方式運動,且S4所處的環境主要是由蛋白質所構成;第二種是S4位於通道蛋白質的外圍與細胞膜接觸,利用擺動的方式移動。在四個S4當中,位在第四結構區域上的S4 (S4/D4)被認為和鈉離子通道的不活化反應最相關。本文即藉由S3與S4間之連接段(S3-4 linker)和S4本身之非鹼性胺基酸的突變,來探討S4在去極化時移動的方式與距離,以及包圍在S4外側之主要電阻區的環境與位置。而我們主要把S3-4 linker與S4分成三條軸線來探討︰S4中帶正電荷的鹼性胺基酸序列為”R”軸線,此序列延伸到不帶有鹼性胺基酸的S3-4 linker上亦稱”R”軸線;”R”軸線的上一個厭水性胺基酸序列稱為”R-1”軸線;下一個厭水性胺基酸序列則稱”R+1”軸線。在將第一結構區域與第四結構區域S3-4 linker上的胺基酸和S4上非鹼性胺基酸的位置一一突變成鹼性胺基酸arginine之後,我們發現鈉離子通道的第一結構區域或是第四結構區域S3-4 linker上,有許多胺基酸位置的突變會造成活化曲線或是不活化曲線向左偏移的現象,此現象尤以”R-1”軸線最明顯,”R+1”軸線和”R”軸線次之,我們認為”R-1”軸線可能最具有能將S4固定於休息態的能力。並且在S4的外圍所包覆的主要電阻區和S4之間相接觸的情形,令人意外地,卻並不緊密,我們只能看出某些胺基酸在去極化的過程中有經過主要電阻區的可能性。不過在去極化的過程中,S4可能移動9個胺基酸的距離,並轉動180度的行動模式,則似乎仍可能與Shaker鉀離子通道是共通的。另外我們在每個結構區域S3-4 linker R1之前一個胺基酸位置的突變結果中看出,不同結構區域各自在通道開關機制當中可能各扮演不同的角色。其中第四結構區域和不活化反應的關係非常密切,也呼應了第四結構區域在構造上與不活化反應的密切相關性,而第一結構區域在活化反應當中可能扮演相當重要的角色。 | zh_TW |
| dc.description.abstract | Abstract
Rat brain type IIA Na+ channel is a member of the voltage-gated Na+ channel which is composed of four structurally similar domains (I-IV). Each of the domain has six transmembrane segments (S1-S6). Because S4 contains regularly spaced basic amino acids, it has been considered as the voltage sensor of the channel. S4 presumably moves in response to membrane electric field change, leading into different gating conformations of the channel. There are chiefly two models explaining the S4 movement: the helical screw (S4 move translationally and rotationally in a gating canal which is composed of part of the channel protein), and the paddle model (S4 lying at the channel periphery and moving as one unit with S3b). Among the four S4s, the one in domain 4 (S4/D4) is especially implicated in Na+ channel inactivation and has been shown to move externally upon membrane depolarization. The amino acids in S3-4 linker and S4 are devided into three axes: the positive basic residues in S4 are called the “R” axis, extending to the hydrophobic residues in S3-4 linker ; the hydrophobic residues ahead of the “R” axis are called the “R-1” axis, and the next ones are the “R+1” axis. We made point mutations of the uncharged residues into arginine in the S3-4 linker and S4, and used two-electrode voltage clamp technique to study the effect of the mutation on channel gating. We found that many arginine mutations on S3-4 linker of domain one and domain four produced negative (hyperpolarized) shifts of the activation curve or inactivation curve, especially in the “R-1” axis, suggesting the essential role of this axis in stabilizing the channel in the resting state. The “impedance zone” surrounding S4 is surprisingly much wider in the Na+ channel than in the Shaker K+ channel. However, it seems plausible that like the S4 in the Shaker channel, the S4 in the Na+ channel are likely to move ~9 residues with a rotation of ~180° during channel activation/inactivation. According to the results of mutations of S3-4 linker at the position just preceding R1, we considered that different domains play different roles during channel activation/inactivation: domain four plays an important role only in channel inactivation, and domain one very likely is involved primarily in channel activation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:50:04Z (GMT). No. of bitstreams: 1 ntu-95-R93441006-1.pdf: 1202219 bytes, checksum: 739faa3cfab1907e865d2c40b222a3d7 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要…………………………………………………………...….……………1 英文摘要…………………………………………………………………....………3 第一章 導論…………………………………………………………………….....5 第二章 材料與方法…………………………………………………………...…22 第三章 結果…………………………………………………………………...…28 第四章 討論……………………………………………………………………...40 圖次 圖1 電位開關性鈉離子通道α subunit結構示意圖……..……….….…………51 圖2 第四結構區域S3-4 linker ”R-1”軸線 F1619R、P1622R與WT之活化曲線及不活化曲線……………………………………………………………….…….…52 圖3 第四結構區域S3-4 linker與S4前段 ”R+1”軸線 S1621R、L1624R、V1627R與WT之活化曲線及不活化曲線……………………………………..….….….53 圖4 第四結構區域S3-4 linker ”R”軸線 V1620R、T1623R與WT之活化曲線及不活化曲線……………………………………………………………...……..….54 圖5 第四結構區域S3-4 linker三條軸線上arginine突變之不活化速率比較…………55 圖6 第四結構區域S4上arginine突變的不活化速率比較…………….………..….56 圖7 第四結構區域S4上所有arginine突變的殘存電流比較…….………………….57 圖8 第一結構區域S3-4 linker ”R-1”軸線L210R、V213R、L216K與WT之活化曲線及不活化曲線………………………………………………...…………..…..58 圖9 第一結構區域S3-4 linker ”R+1”軸線N212R、A215R與WT之活化曲線及不活化曲線…………….……………………………………………...……….….59 圖10 第一結構區域S3-4 linker ”R”軸線 G211R、S214R與WT之活化曲線及不活化曲線……….…………………………………………………….…………....60 圖11 第一結構區域S3-4 linker三條軸線上arginine突變之活化速率比較…………..61 圖12 第一結構區域S4上”R-1”軸線F219R的活化速率與不活化速率比較圖……..62 圖13 第一結構區域S4 ”R-1”軸線 F219R、L222R、L225R、I228R與WT之活化曲線及不活化曲線……………………………………………………...……....63 圖14 第一結構區域S4上”R+1”軸線V221R的活化速率與不活化速率比較圖…....64 圖15 第一結構區域S4 ”R+1”軸線 V221R、A224R、T227R與WT之活化曲線及不活化曲線………………………………………………………….……….….65 圖16 第一結構區域S3-4 linker上R1-1(L216)各種胺基酸突變與WT之活化曲線及不活化曲線…….……………………………………………………...…….…..66 圖17 第二結構區域S3-4 linker上R1-1(L849)各種胺基酸突變與WT之活化曲線及不活化曲線…….…………………………………………...…………….……..67 圖18 第三結構區域S3-4 linker上R1-1(I1297)各種胺基酸突變與WT之活化曲線及不活化曲線…………………………………………………………...…………68 表一 第四結構區域之S3-4linker及S4上所有arginine突變的Vh及k値……...69 表二 第一結構區域之S3-4linker及S4上所有arginine突變的Vh及k値….…70 參考文獻…………………………………………………………………………….71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 第四結構區域 | zh_TW |
| dc.subject | 第四穿膜區段 | zh_TW |
| dc.subject | 第一結構區域 | zh_TW |
| dc.subject | 鈉離子通道 | zh_TW |
| dc.subject | S4 | en |
| dc.subject | D1 | en |
| dc.subject | D4 | en |
| dc.subject | sodium channel | en |
| dc.title | 鈉離子通道S4/D1與S4/D4區段與
通道活化及不活化反應之關係 | zh_TW |
| dc.title | The Different Roles of S4/D1 and S4/D4 Segments in Sodium Channel Activation and Inactivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃榮棋,謝如姬,劉天申,蔡明正 | |
| dc.subject.keyword | 鈉離子通道,第四結構區域,第一結構區域,第四穿膜區段, | zh_TW |
| dc.subject.keyword | sodium channel,D4,D1,S4, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
