Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄
dc.contributor.authorMing-Han Lien
dc.contributor.author李明翰zh_TW
dc.date.accessioned2021-06-13T03:47:36Z-
dc.date.available2008-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1] T.H. Nga, V. Hoa, L.W. Teob, M.S. Taya, B.H. Koha, W.K. Chima,, W.K. Choia, A.Y. Duc, C.H. Tung “Fabrication and characterization of a trilayer germanium nanocrystal memory device with hafnium dioxide as the tunnel dielectric” Thin Solid Films 462– 463 (2004) 46– 50
[2] Jong Jin Lee, Yoshinao Harada, Jung Woo Pyun and Dim-Lee Kwong
“Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications” APPLIED PHYSICS LETTERS 86.
[3] Yan Ny Tan, Wai Kin Chim, Wee Kiong Choi, Moon Sig Joo, Tsu Hau Ng and Byung Jin Cho “High-K HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation”
[4] Yan-Ny Tan, Wai-Kin Chim, , Byung Jin Cho, , and Wee-Kiong Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 7, JULY 2004
[5] S. Tiwari, F. rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, “Volatile and Non-volatile Memories in Silicon with Nano-Crystal Storage,” IEDM Tech. Dig., p.521-524, 1995.
[6] Ya-Chin King, Tsu-Jae King, and Chenming Hu, “MOS Memory Using Germanium Nanocrystals Formed by Thermal Oxidation of Si1-xGex ,” IEDM Tech. Dig., p.115-118, 1998.
[7] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication,” IEEE Transactions on Electron Devices, Vol.49, No.9, September 2002.
[8] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories—Part II: Electrical Characteristics,” IEEE Transactions on Electron Devices, Vol.49, No.9, September 2002.
[9] M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J. C. Shim, H. Kurino, and
M. Koyanagi, “New nonvolatile memory with extremely high density
metal nano-dots,” in IEDM Tech. Dig., 2003, pp. 553–556.
[10] Jong Jin Lee, Xuguang Wang, Weiping Bai, Nan Lu, and Dim-Lee Kwong “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 10, OCTOBER 2003
[11] Dong-Won Kim, Taehoon Kim, and Sanjay K. Banerjee, “Memory characterization of SiGe Quantum Dot Flash Memories With HfO2 and SiO2
tunneling Dielectrics” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003
[12] Jong Jin Lee and Dim-Lee Kwong, Senior Member, IEEE “Metal Nanocrystal Memory With High-K Tunneling Barrier for Improved Data Retention” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 4, APRIL 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32408-
dc.description.abstract藉由高頻電容電壓(C-V)以及資料儲存(Retention)量測,可以探討電荷在以高介電質材料為穿遂層的奈米金粒子電荷儲存元件中是如何被寫入、抹除以及流失。我們將會用X光繞射儀(XRD)、電流電壓以及電容電壓量測去分析在不同溫度處理下,氧化鉿(HfO2)以及鉿矽酸鹽(HfSiO2)的變化。在高溫下,氧化鉿有結晶化的現象。此現象會降低電容儲存元件的性能。為了避免結晶化的現象,我們使用化學還原沉積的方式製造奈米金粒子。因為此種方式可以在室溫下進行,即可避免氧化鉿在高溫下結晶。由於此材料的高介電特質,在相同的等效氧化層厚度(EOT)下,氧化鉿可以做的比二氧化矽來的厚,如此便能降低從金粒子到矽基板的漏電流。如此一來,以氧化鉿當作穿遂層的元件比起以二氧化矽當作穿遂層的元件,其資料保存能力可以好上兩倍。另外一個避免高溫結晶的方法就是把穿遂層換成鉿矽酸鹽。經過高溫處理的鉿矽酸鹽,我們並沒有觀察到有結晶化的現象。最後,我們控制沉積時間去製造以矽酸鹽為穿遂層且具有不同密度奈米金粒子的元件,進而觀察儲存電荷與奈米金粒子的關係。zh_TW
dc.description.abstractThe Au nanocrystal charge storage device by using High-K material as tunneling layer will be investigated in both C-V and Retention measurement to realize how the charge is programmed, erased and leaked. The tunneling layer material, such as HfO2 and HfSiO2, will be examined by XRD, IV, and CV measurement after different temperature annealing. The crystallization phenomenon is observed in HfO2 at high temperature. This phenomenon will decrease the performance of our device. In order to avoid crystallization, we use chemical redundant deposition to fabricate Au nano-dots. Because this process can be done in room temperature, we can keep HfO2 away from high temperature process. Owing to the high permittivity, HfO2 can be thicker than SiO2 in the same equivalent oxide thickness (EOT) and reduce the leakage current from Au nano-dots to silicon substrate. Thus, the retention of device by using HfO2 as tunneling layer is two times better than that by using SiO2 as tunneling layer. Another way to avoid crystallization is to change tunneling layer from HfO2 to HfSiO2. The crystallization phenomenon is not observed in HfSiO2 after high temperature annealing. At last, we are able to fabricate different density of Au dots in devices by using HfSiO2 as tunneling layer by controlling the deposition time. In this way, we can examine the relationship between the stored charge and the density of Au nano-dots.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:47:36Z (GMT). No. of bitstreams: 1
ntu-95-R93943092-1.pdf: 1591791 bytes, checksum: cbce2e9a31026cce08e8bae1bf895dbf (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 簡介 1
1.1 簡介……………………………………………………………………………..1
1.2 研究動機..………………………………………………………………………3
1.3 論文組織……………….……………………………………………………….3
1.4 參考文獻..............................................................................................................5
第二章 背景知識 10
2.1 簡介………………………………...…………………………………………10
2.1.1 奈米晶體記憶體……..............................................................................10
2.1.2 金屬奈米晶體記憶體……..…………………………………………....11
2.2 金氧半元件理論……....……………………………………...........................11
2.2.1 高頻電容電壓特性………………………………………......................11
2.2.2 平帶電壓偏移………….……………………………………………….13
2.2.3 資料儲存能力...………………………………………………………...13
2.3 參考文獻...…….…………………………………………………………...15
第三章 實驗製程和量測儀器 21
3.1 簡介……...…………………………….……………………………………...21
3.2 非揮發性記憶體的的製程步驟…………………………………...…………21
3.3 量測和儀器…………………………………………………………………...22
第四章 實驗結果和討論 28
4.1 簡介………………………………………………….………………………..28
4.2以氧化鉿為穿遂層的金粒子電荷儲存元件……………………………........28
4.2.1等效氧化層厚度(EOT)…………………………………..……………...29
4.2.2溫度對氧化鉿的影響…………………………………...…..…………..29
4.2.3電荷儲存元件的電特性…………………………………………..…….30
4.3以鉿矽酸鹽為穿遂層的奈米金粒子電荷儲存元件 32
4.3.1鉿矽酸鹽的分析…...……………………………………………………32
4.3.2 不同金粒子密度的比較………………….…………………………….32
第五章 結論 55
dc.language.isozh-TW
dc.subject氧化鉿zh_TW
dc.subjectHfO2en
dc.title以高介電材質為穿遂層的奈米金粒子金氧半電荷儲存元件zh_TW
dc.titleAu Nanocrystal MOS Charge Storage Device By Using High-K Material As Tunneling Layeren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳邦旭,孫允武,陳俊吉,鄭湘原
dc.subject.keyword氧化鉿,zh_TW
dc.subject.keywordHfO2,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved