Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32392
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor彭隆瀚
dc.contributor.authorChien-Jen Laien
dc.contributor.author賴建任zh_TW
dc.date.accessioned2021-06-13T03:46:41Z-
dc.date.available2008-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citationReferences
[1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, Sep. 1962.
[2] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron., vol. 28, pp. 2631-2654, Nov. 1992.
[3] Y. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, Nov. 1993.
[4] W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE, Photon. Technol. Lett., vol. 6, pp. 252-254, Feb. 1994.
[5] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Amer. B., vol. 12, pp. 2102-2116, Nov. 1995.
[6] L. E. Myers and W. R. Bosenberg, “Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators,” IEEE J. Quantum Electron., vol. 33, pp. 1663-1672, Oct. 1997.
[7] S. M. Saltiel and Y. S. Kivshar, “All-optical deflection and splitting by second-order cascading,” Opt. Lett., vol. 27, pp. 921-923, Jun. 2002.
[8] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chanban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 11, pp. 653-655, Jun. 1999.
[9] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberger, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett., vol. 21, pp. 591-593, Apr. 1996.
[10] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation chirped-period-poled lithium niobate,” Opt. Lett., vol. 22, 1341-1343, Sep. 1997.
[11] N. O’Brien, M. J. Missey, P. E. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett., vol. 24, pp. 1750-1752, Dec. 1999.
[12] P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett., vol. 23, pp. 159-161, Feb. 1998.
[13] H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett., vol. 79, 728-730, Aug. 2001.
[14] Y. Y. Zhu, S. N. Zhu, N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science, vol. 278, pp. 843-846, Oct. 1997.
[15] K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple Nonlinear Optical Interactions with Arbitrary Wave Vector Differences,” Phys. Rev. Lett., vol. 88, pp. 023903-1-023903-4, Jan. 2002.
[16] V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett., vol. 81, pp. 4136-4139, Nov. 1998.
[17] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett., vol. 84, pp. 4345-4348, May. 2000.
[18] A. H. Norton and C. M. de Sterke, “Optimal poling of nonlinear photonic crystals for frequency conversion,” Opt. Lett., vol. 28, pp. 188-190, Feb. 2003.
[19] L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tenability of second-harmonic generation from two-dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett., vol. 84, pp. 3250-3252, Apr. 2004.
[20] R. T. Bratfalean, A. C. Peacock, N.G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett., vol. 30, pp. 424-426, Feb. 2005.
[21] R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett., vol. 95, pp. 133901-1-133901-4, Sep. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32392-
dc.description.abstract本論文主要在探討基頻光是高斯光束而非平面波的情況下,利用二維非線性光子晶體及準相位匹配所產生的二倍頻轉換。我們的模擬分析給出了晶體內部,近場以及遠場的二倍頻強度分布。我們也設計了實驗來觀察這些模擬給出的近場強度分布,其結果與理論所預測的相當一致。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T03:46:41Z (GMT). No. of bitstreams: 1
ntu-95-R93941009-1.pdf: 1925809 bytes, checksum: d5357f70a4eb0f566f71d0bad3a9bad8 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Chapter 1 INTRODUCTION ..................................1
Chapter 2 THEORY ........................................3
2.1 A Comprehensive Approach ............................3
2.2 The Fundamental Equations ...........................4
2.3 Far-Field Approximation .............................5
2.4 Near-Field Calculation ..............................7
2.5 Practical Simplification ............................8
2.6 Some Considerations about Simulation ................9
Chapter 3 SIMULATION ...................................12
3.1 Algorithm .......................................12
3.2 Results .........................................13
Chapter 4 EXPERIMENT ...................................19
Chapter 5 RESULTS ......................................24
5.1 Slit-Scanning ...................................24
5.2 CCD Images ......................................26
5.3 Translation of 2D PPLN ..........................29
Chapter 6 CONCLUSION ...................................30
6.1 Conclusion.......................................30
6.2 Future Work......................................30
Appendix I .............................................31
References .............................................32
dc.language.isoen
dc.subject準相位匹配zh_TW
dc.subject二維非線性光子晶體zh_TW
dc.subject二倍頻zh_TW
dc.subjectquasi-phase-matchingen
dc.subject2D nonlinear photonic crystalen
dc.subjectsecond harmonic generationen
dc.title二維非線性光子晶體準相位匹配的研究zh_TW
dc.titleResearch of Quasi-Phase-Matching in Two-Dimensional Nonlinear Photonic Crystalsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴?杰,張宏鈞,孔慶昌
dc.subject.keyword二維非線性光子晶體,準相位匹配,二倍頻,zh_TW
dc.subject.keyword2D nonlinear photonic crystal,quasi-phase-matching,second harmonic generation,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
1.88 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved