請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卡艾瑋 | |
| dc.contributor.author | Chi-Wei Lu | en |
| dc.contributor.author | 盧志偉 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:45:14Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | Berryman, J.G. (1980) Confirmation of Biot’s theory. Appl. Phys. Lett. 37(4), 382-385.
Biot, M.A. (1956) Theory of propagation of Elastic Waves in Fluid-Saturated Porous Solid.I. Low-Frequency Range. J. Acoust. Soc. Amer. 28(2), 168-178. Capart, H. (2004) Shallow flow. Lecture notes, National Taiwan University, Spring 2004. Charbeneau, R. J. (2000) Groundwater Hydraulics and Pollutant Transport. Prentice-Hall. Curtis, R. P. and Lawson, J. D. (1967) Flow over and through rockfill banks. ASCE J. Hydr. Div. 93(5), 1-21. Dalrymple, R.A., Losada, M.A. and Martin, P.A. (1991) Reflection and transmission from porous structures under oblique wave attack. J. Fluid Mech. 224, 625-44. Geurst, J. A., (1985) Virtual mass in two-phase bubbly flow. Physica A 129, 233-261. Guinot, V. and Soares-Frazão, S. (2006) Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids. Int. J. Numer. Meth. Fluids 50, 309-345. Linton Johnson, D., Plona, T. J. and Scala, C. (1982) Tortuosity and acoustic slow waves. J. Phy. Soc. Amer. 49(25), 1840-1844. Le Mehaute, B. (1961) Theory of wave agitation in a harbor. J. Hydr. Div. 87(2), 31-50. Michioku, K., Maeno, S., Furusawa, T., and Haneda, M. (2005) Discharge through a permeable rubble mound weir. J. Hydr. Eng. 131(1),1-10. Nujić, M. (1995) Efficient implementation of non-oscillatory schemes for the computation of free-surface flows. J. Hydr. Res. 33(1), 101-111. Pauchon, C. and Smereka, P., (1992) Momentum interactions in dispersed flow: An averaging and a variational approach. Int. J. Multiphase Flow 18, 65-87. Wallis, G. B. (1991) The averaged Bernoulli equation and macroscopic equations of motion for the potential flow of a dispersion. Int. J. Multiphase Flow 17, 683-695. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32367 | - |
| dc.description.abstract | 本論文目的在於研究當淺水波通過一變動多孔介質層的發展。一個有特色的例子為潰壩問題所造成的波將分別在兩方向形成反射以及透射。論文其中包含理論的推導、實驗的方法、影像分析過程以及數值模擬。再推導統馭方程式過程中我們將會引進如何用漢米頓最小作用量原理說明附加質量的影響。影像分析過程中我們將會提供一個解決鏡像扭曲的簡單2D處理方式,除此之外我們將會呈現如何使用活塞完成無壩堤之潰壩實驗。最後將會使用實驗結果以及數值模擬結果去將慣量以及附加質量特性化在於波的發展過程。 | zh_TW |
| dc.description.abstract | The goal of the present thesis is to investigate shallow water flows propagating through a medium of variable porosity. One particular case considered is a dam-break wave partially reflected and transmitted at a vertical porous boundary. The contents of this thesis include the derivation of governing equations, experimental methods, image analysis and the numerical modeling. In the derivation of the governing equations we will introduce how to use the Hamilton’s principle of least action to account for added mass effects. Image processing will offer some sample way to solve the radial distortion problem in 2D. Besides, we will show how to use piston to do dam-break experiment without using a sluice gate. Finally, we use experimental and numerical results to characterize the influence of inertia and added mass on the wave propagation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:45:14Z (GMT). No. of bitstreams: 1 ntu-95-R93521315-1.pdf: 20147654 bytes, checksum: 067d17233bff3e17ab72c3bf61c67546 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv Table of contents v Figure List viii Table List xii CHAPTER 1 1 INTRODUCTION 1 CHAPTER 2 4 THEORY – GOVERNING EQUATION DERIVATION 4 Hamilton’s principle of least action 4 2.1.1. Variational principle derivation of the equation of motion 4 Continuity equation inside porous media 6 2.1.2. Conservation of mass 7 2.1.3. Porosity 7 Momentum equation inside porous media 8 2.1.4. Added mass 8 2.1.5. Porous media of motion 10 2.1.6. Permeability influence 13 2.1.7. Full equation 14 2.1.8. Discussion 15 2.1.8.1 Reduction to Guinot and Soares equation 15 2.1.8.2 Reduction to classical shallow water equation 16 2.1.8.3 Reduction to Dupuit equation 16 CHAPTER 3 17 NUMERICAL SCHEME AND COMPARISON WITH ANALYTICAL SOLUTIONS 17 Computational processing 17 3.1.1. Eigenvalues evaluating 17 3.1.2. Conserved variable form of governing equations 18 3.1.3. Finite volume method 19 3.1.3.1 Numerical scheme of approaching 20 Validation against analytical solution 23 3.1.4. The Riemann dam-break problem 23 3.1.5. The dam-break problem across a porosity discontinuity 24 3.1.5.1 The effect of added mass 25 CHAPTER 4 27 EXPERIMENTAL SET-UP AND METHOD 27 Experimental set-up 27 Experimental method 30 4.1.1. UV lights supply 30 4.1.2. Porosity’s variation in geometric 31 4.1.3. The materials of porous media 33 4.1.4. The raw image catching 35 Image processing 36 4.1.5. Radial distortion. And calibration 36 CHAPTER 5 40 EXPERIMENTAL RESULTS 40 The classical dam-break wave with dye 40 5.1.1. The raw image result 41 5.1.2. Calibration of time 47 5.1.3. Inverse problem of upstream depth 47 The dam-break wave inside porous media 50 5.1.4. The raw image result 51 5.1.5. Calibration of time 53 5.1.6. Inverse problem of upstream depth 53 The dam-break wave in channel of variable porosity 56 5.1.7. The raw image result 57 5.1.8. Calibration of time 62 5.1.9. Inversing upstream depth 62 CHAPTER 6 66 COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 66 The classical dam-break wave with dye 66 The dam-break wave inside porous media 69 6.1.1. Test the influence of added mass 69 6.1.2. Influence of Forchheimer coefficient 70 6.1.3. Comparison between numerical and experimental results 73 The dam-break wave in channel of variable porosity 75 6.1.4. Test the influence of added mass 75 6.1.5. Influence of Forchheimer coefficient 76 6.1.6. Comparison between numerical and experimental results 77 CHAPTER 7 81 CONCLUSIONS AND FURTHER WORK 81 Conclusions 81 Further work 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可變性多孔介質層 | zh_TW |
| dc.subject | 附加質量 | zh_TW |
| dc.subject | 淺水波 | zh_TW |
| dc.subject | added mass | en |
| dc.subject | variable porous media | en |
| dc.subject | shallow flow | en |
| dc.title | 非穩態慣性流於可變性多孔介質之渠道 | zh_TW |
| dc.title | Unsteady inertial flow in channels of variable porosity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊德良,陳樹群,周憲德 | |
| dc.subject.keyword | 可變性多孔介質層,附加質量,淺水波, | zh_TW |
| dc.subject.keyword | variable porous media,added mass,shallow flow, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 19.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
