Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卡艾瑋
dc.contributor.authorChi-Wei Luen
dc.contributor.author盧志偉zh_TW
dc.date.accessioned2021-06-13T03:45:14Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citationBerryman, J.G. (1980) Confirmation of Biot’s theory. Appl. Phys. Lett. 37(4), 382-385.
Biot, M.A. (1956) Theory of propagation of Elastic Waves in Fluid-Saturated Porous Solid.I. Low-Frequency Range. J. Acoust. Soc. Amer. 28(2), 168-178.
Capart, H. (2004) Shallow flow. Lecture notes, National Taiwan University, Spring 2004.
Charbeneau, R. J. (2000) Groundwater Hydraulics and Pollutant Transport. Prentice-Hall.
Curtis, R. P. and Lawson, J. D. (1967) Flow over and through rockfill banks. ASCE J. Hydr. Div. 93(5), 1-21.
Dalrymple, R.A., Losada, M.A. and Martin, P.A. (1991) Reflection and transmission from porous structures under oblique wave attack. J. Fluid Mech. 224, 625-44.
Geurst, J. A., (1985) Virtual mass in two-phase bubbly flow. Physica A 129, 233-261.
Guinot, V. and Soares-Frazão, S. (2006) Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids. Int. J. Numer. Meth. Fluids 50, 309-345.
Linton Johnson, D., Plona, T. J. and Scala, C. (1982) Tortuosity and acoustic slow waves. J. Phy. Soc. Amer. 49(25), 1840-1844.
Le Mehaute, B. (1961) Theory of wave agitation in a harbor. J. Hydr. Div. 87(2), 31-50.
Michioku, K., Maeno, S., Furusawa, T., and Haneda, M. (2005) Discharge through a permeable rubble mound weir. J. Hydr. Eng. 131(1),1-10.
Nujić, M. (1995) Efficient implementation of non-oscillatory schemes for the computation of free-surface flows. J. Hydr. Res. 33(1), 101-111.
Pauchon, C. and Smereka, P., (1992) Momentum interactions in dispersed flow: An averaging and a variational approach. Int. J. Multiphase Flow 18, 65-87.
Wallis, G. B. (1991) The averaged Bernoulli equation and macroscopic equations of motion for the potential flow of a dispersion. Int. J. Multiphase Flow 17, 683-695.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32367-
dc.description.abstract本論文目的在於研究當淺水波通過一變動多孔介質層的發展。一個有特色的例子為潰壩問題所造成的波將分別在兩方向形成反射以及透射。論文其中包含理論的推導、實驗的方法、影像分析過程以及數值模擬。再推導統馭方程式過程中我們將會引進如何用漢米頓最小作用量原理說明附加質量的影響。影像分析過程中我們將會提供一個解決鏡像扭曲的簡單2D處理方式,除此之外我們將會呈現如何使用活塞完成無壩堤之潰壩實驗。最後將會使用實驗結果以及數值模擬結果去將慣量以及附加質量特性化在於波的發展過程。zh_TW
dc.description.abstractThe goal of the present thesis is to investigate shallow water flows propagating through a medium of variable porosity. One particular case considered is a dam-break wave partially reflected and transmitted at a vertical porous boundary. The contents of this thesis include the derivation of governing equations, experimental methods, image analysis and the numerical modeling. In the derivation of the governing equations we will introduce how to use the Hamilton’s principle of least action to account for added mass effects. Image processing will offer some sample way to solve the radial distortion problem in 2D. Besides, we will show how to use piston to do dam-break experiment without using a sluice gate. Finally, we use experimental and numerical results to characterize the influence of inertia and added mass on the wave propagation.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:45:14Z (GMT). No. of bitstreams: 1
ntu-95-R93521315-1.pdf: 20147654 bytes, checksum: 067d17233bff3e17ab72c3bf61c67546 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
Table of contents v
Figure List viii
Table List xii
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 4
THEORY – GOVERNING EQUATION DERIVATION 4
Hamilton’s principle of least action 4
2.1.1. Variational principle derivation of the equation of motion 4
Continuity equation inside porous media 6
2.1.2. Conservation of mass 7
2.1.3. Porosity 7
Momentum equation inside porous media 8
2.1.4. Added mass 8
2.1.5. Porous media of motion 10
2.1.6. Permeability influence 13
2.1.7. Full equation 14
2.1.8. Discussion 15
2.1.8.1 Reduction to Guinot and Soares equation 15
2.1.8.2 Reduction to classical shallow water equation 16
2.1.8.3 Reduction to Dupuit equation 16
CHAPTER 3 17
NUMERICAL SCHEME AND COMPARISON WITH ANALYTICAL SOLUTIONS 17
Computational processing 17
3.1.1. Eigenvalues evaluating 17
3.1.2. Conserved variable form of governing equations 18
3.1.3. Finite volume method 19
3.1.3.1 Numerical scheme of approaching 20
Validation against analytical solution 23
3.1.4. The Riemann dam-break problem 23
3.1.5. The dam-break problem across a porosity discontinuity 24
3.1.5.1 The effect of added mass 25
CHAPTER 4 27
EXPERIMENTAL SET-UP AND METHOD 27
Experimental set-up 27
Experimental method 30
4.1.1. UV lights supply 30
4.1.2. Porosity’s variation in geometric 31
4.1.3. The materials of porous media 33
4.1.4. The raw image catching 35
Image processing 36
4.1.5. Radial distortion. And calibration 36
CHAPTER 5 40
EXPERIMENTAL RESULTS 40
The classical dam-break wave with dye 40
5.1.1. The raw image result 41
5.1.2. Calibration of time 47
5.1.3. Inverse problem of upstream depth 47
The dam-break wave inside porous media 50
5.1.4. The raw image result 51
5.1.5. Calibration of time 53
5.1.6. Inverse problem of upstream depth 53
The dam-break wave in channel of variable porosity 56
5.1.7. The raw image result 57
5.1.8. Calibration of time 62
5.1.9. Inversing upstream depth 62
CHAPTER 6 66
COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 66
The classical dam-break wave with dye 66
The dam-break wave inside porous media 69
6.1.1. Test the influence of added mass 69
6.1.2. Influence of Forchheimer coefficient 70
6.1.3. Comparison between numerical and experimental results 73
The dam-break wave in channel of variable porosity 75
6.1.4. Test the influence of added mass 75
6.1.5. Influence of Forchheimer coefficient 76
6.1.6. Comparison between numerical and experimental results 77
CHAPTER 7 81
CONCLUSIONS AND FURTHER WORK 81
Conclusions 81
Further work 83
dc.language.isozh-TW
dc.subject可變性多孔介質層zh_TW
dc.subject附加質量zh_TW
dc.subject淺水波zh_TW
dc.subjectadded massen
dc.subjectvariable porous mediaen
dc.subjectshallow flowen
dc.title非穩態慣性流於可變性多孔介質之渠道zh_TW
dc.titleUnsteady inertial flow in channels of variable porosityen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊德良,陳樹群,周憲德
dc.subject.keyword可變性多孔介質層,附加質量,淺水波,zh_TW
dc.subject.keywordvariable porous media,added mass,shallow flow,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
19.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved