請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32357
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃良雄 | |
dc.contributor.author | Chun-Hsiang Wang | en |
dc.contributor.author | 王俊翔 | zh_TW |
dc.date.accessioned | 2021-06-13T03:44:39Z | - |
dc.date.available | 2006-07-28 | |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-25 | |
dc.identifier.citation | 1. Arfken, and Weber, (2001), “Mathematical methods for physicists” 5thed, Harcourt Sci. and Tech. Co.
2. Biot, M. A., (1962), “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33, 1482-1498. 3. Chen, H. S., and Mei, C. C. (1974), “Oscillations and wave forces in an offshore harbor”, Ralph M. Parsons Laboratory, Report NO.190, MIT. 4. Cooper, H. H. et al., (1965), “The response of well-aquifer systems to seismic waves”, J. Geophys. Res., Vol. 70, 3915-3926. 5. Davis, G. H. et al., (1995), ”Water-level fluctuations in wells in earthquakes in Kern County, 1952”, Calif. Dept. Nat. Res., Div. Mines Bull., Vol. 171, 99-106. 6. Gabert, G. M., (1965), “Groundwater-level fluctuations in Alberta, Canada, caused by the Prince William Sound, Alsaska, Earthquake of March, 1964”, Canadian Journal of Earth Sciences, Vol. 2, 131-139. 7. Huang, L. H., and Chao, H. I., (1992), “Reflection and transmission of water wave by porous breakwater”, J. Water, Port, Coast, and Ocean Engrg., Vol. 118, 437-452. 8. Huang, L. H. and Song, C. H., (1993), “Dynamic response of poroelastic bed to water waves”, J. Hydraulic Engineering, ASCE, Vol. 119, 1003-1020. 9. Ishiguro, M. et al., (1983), “A Bayesian approach to the analysis of earth tides”, Proceeding of the Ninth International Symposium on Earth Tides, 283-292. 10. Lee, J. J., (1969), “Wave-induced oscillations in harbours of arbitrary shape”, Report KH-R-20, W. M. Keek Laboratory of Hydraulics and Water Resources, CIT. 11. Liu, L. F., and Wen, J. G., (1997), “Nonlinear diffusive surface waves in porous media”, J. Fluid Mech., Vol. 347, 119-139. 12. McNown, J. S., (1952), “Waves and seiche in idealized ports”, Gravity Wave Symposium, National Bureau of Standards Circular 521. 13. Mei, C. C., (1989), “The applied dynamics of ocean surface waves”, World Scientific Publishing Co. Pte. Ltd. 14. Nur, A., (1972), “Dilatancy, pore fluids, and premonitory variations in ts/tp travel times”, Seismological Society of American Bulletin, Vol. 62, 1217-1222. 15. Ou Yang, H. T., Huang, L. H., and Hwang, W. S., (1997), “The interface of a semi-submerged obstacle on the porous breakwater”, Applied Ocean Res., Vol. 19, 263-273. 16. Streeter, V. L. and Wylie, E. B., (1985), “Fluid Mechanics”, 8th Ed., McGraw-Hill Book Co. 17. Tomas, H. E., (1940), “Fluctuation in ground-water level”, Bull. Seism. Soc. Am., Vol. 30, 93-97. 18. Tsay, T. K. and Liu, P. L-F., (1983), “A finite element model for wave refraction and diffraction”, Appl. Ocean Research, Vol. 5, 30-37. 19. Yu, X. P., and Chwang, A. T., (1993), “Analysis of wave scattering by submerged circular disk”, J. Engrg. Math., Vol. 119, 1804-1817. 20. 周宗仁、韓文育、張景程, (1985), “任意形狀、水深及反射率港池的水面振動實例”, 第十四屆海洋工程研討會, 423-443。 21. 蘇青和、蔡丁貴, (1995), “港池波場推算模式―Model WE21使用手冊”, 港灣技術研究所出版。 22. 國立成功大學防災研究中心, (2001~2005), “地震發生前後地下水位異常變化之研究(1/5)~(5/5)”, 經濟部水利署。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32357 | - |
dc.description.abstract | 1999年九二一大地震發生前一天,台灣中部部分濁水溪沖積扇水井確實被觀測到地震之前兆現象,然而地震「前兆」之微小異常壓力波為何能被觀測到,吾人認為應是由於水井共振效應之放大作用所致。因此本研究期望藉由數學模式之建立分析共振現象發生之物理機制,以提供建立地震預警觀測井系統之設計參考。
本研究假設水井內部為非黏性、非旋性,且不可壓縮之均質理想流體,水井外部則為剛性結構之多孔介質流,以微小振幅波理論以及達西定律探討微小地震前兆波作用於水井之波場與物理機制。經由拘限含水層傳遞之微小前兆壓力波之波數則以Huang & Song(1993)所提出Biot(1962)第二種膨脹波波數 之表示式表示之。 本研究成功地避開直接計算之數值模擬,以理論解析方法提出合理之邊界條件,建立邊界值問題,並以正規擾動展開法(regular perturbation expansion method)及分割法(dividing method)配合正交函數之正交特性,順利解得各項合乎物理性質之解析解,且得到引發共振現象之相關參數表示式。 有別於Cooper在類似U-型管共振研究中所提出由強大壓力縱波引致水井內水體縱波共振之結果,以及傳統港池共振分析中由強大之質量通量橫波引致港池內橫波共振者,本研究得到由微小之地震前兆縱波將引致水井內橫波共振現象之結果,異於以往共振現象發生之物理機制,乃一嶄新之重大發現。 由於成功保留共振發生之相關物理參數表示式,具有對地震前兆引致水井水面共振現象解析的能力,本研究對於有關地震監測預警觀測井設計等工程應用,應能有所助益。 | zh_TW |
dc.description.abstract | One day before the drastic 921-earthquake at central Taiwan in 1999, the pre-earthquake signals were observed in some water wells in Tsuo-Shui River water basin. How could the unusual tiny pressure wave of the pre-earthquake signals be observed? We believe one of the possible reasons is due to the effect of resonant amplification of wells. In this study, we expect to analyze the physical mechanism which leads the occurrence of resonant phenomenon by the construction of mathematical model.
In the assumption that the water in the well is incompressible, inviscid and irrotational homogeneous ideal fluid and that outside the well is porous-media fluid with rigid structure, the small amplitude wave theory and Darcy’s law are adopted in the present study to investigate the wave field and the physical mechanism when the tiny pressure wave of the pre-earthquake signals is acting on the well. We consider the wave number of the tiny pressure wave of the pre-earthquake signals passing through confined aquifer as that of the second kind of dilational wave in Biot(1962) theory to which Huang & Song(1993) referred. The present study derives the reasonable boundary conditions, and thus constructs the boundary value problem by theoretical analytic method. Then by regular perturbation expansion method, dividing method and orthogonal condition of orthogonal functions, this study successfully solves the analytic solutions which correspond to physical phenomenon, and gets formulas of relative parameters which induce to resonance phenomenon. Instead of the result of the research similar to U-tube by Cooper(1965), longitudinal wave resonance of water in the well induced by huge longitudinal pressure wave, and that from traditional harbour resonance analysis, transverse wave resonance induced by huge transverse mass flux wave, in the study, we get a new result of resonance; i.e. resonance of transverse wave induced by tiny longitudinal pressure wave of the pre-earthquake signals. Due to the success of solving pre-earthquake signals acting on the well, the present study is helpful in analyzing well resonance and designing of observing water wells as the earthquake alert system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:44:39Z (GMT). No. of bitstreams: 1 ntu-95-R92521331-1.pdf: 3800767 bytes, checksum: cbd4144194fd39ac14e8c96e625b4bd1 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract V 目錄 VII 表目錄 X 圖目錄 XI 符號說明 XVI 第一章 導論 1 1.1 相關資料整理 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.4 章節介紹 6 第二章 地震前兆引致水井水面共振數學模式之建立 9 2.1 地震前兆引致水井水面共振之驅動機制 9 2.2 地震前兆引致水井水面共振之邊界值問題 10 2.2.1控制方程式 10 2.2.2邊界條件 12 2.2.3邊界值問題之建立 15 第三章 地震前兆引致水井水面共振問題之正規擾動法 18 3.1 擾動展開尺度函數之探討 19 3.2 正規擾動法展開之邊界值問題 22 第四章 地震前兆引致水井水面共振之波場解析 26 4.1 地震前兆入射波 26 4.2 階水井水面共振之邊界值問題 27 4.2.1 通解之推導 27 4.2.2 物理性質 28 4.3 階水井水面共振之邊界值問題 29 4.3.1 階水井內部邊界值問題 29 4.3.1.1 通解之推導性質 35 4.3.1.2 物理性質 42 4.3.2 階水井外部邊界值問題 45 4.3.2.1通解之推導性質 45 4.3.2.2物理性質 47 第五章 結果與討論 49 5.1 引發共振之物理機制 49 5.2 水井水面共振之因子 51 5.3 水井水面共振波紋之探討 54 5.4 水井內部之速度勢能場 56 5.4.1 共振發生時之速度勢能場 57 5.4.2 無共振發生時之速度勢能場 59 5.5 水井外部拘限含水層之速度勢能場 60 第六章 結論與建議 62 6.1 結論 62 6.2 建議 63 參考文獻 65 附錄A 正向入射波之反射波與透射波之解 112 附錄B 拉普拉士方程式在圓柱座標下之通解 114 附錄C Cooper與U-型管共振之分析研究 119 附錄D 傳統港池共振之分析研究 123 | |
dc.language.iso | zh-TW | |
dc.title | 地震前兆引致水井水面共振之機制研究 | zh_TW |
dc.title | A study on the mechanism of water well resonance induced by pre-earthquake signals | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林美聆,謝平城,張國強 | |
dc.subject.keyword | 地震前兆,水井,共振,縱波,橫波, | zh_TW |
dc.subject.keyword | pre-earthquake signal,well,resonance,longitudinal wave,transverse wave, | en |
dc.relation.page | 125 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。