請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32324
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林達德 | |
dc.contributor.author | Shih-Fang Chen | en |
dc.contributor.author | 陳世芳 | zh_TW |
dc.date.accessioned | 2021-06-13T03:42:50Z | - |
dc.date.available | 2006-09-01 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-26 | |
dc.identifier.citation | 參考文獻
1.史巧菱。2004。運用數學型態學方法於cDNA微陣列之影像處理。碩士論文。台北:台北醫學大學醫學資訊研究所。 2.陳健尉、姚培莉、楊畔池。2004。基因微陣列之實務操作與分析。初版。台北:金名圖書。 3.曾銘仁,阮雪芬,李宗憲,吳嘉欽,陳韻如 譯。2003。基因體科學入門。初版,123-136。台北:藝軒。 4.錢中方。2003。應用三維機器視覺於蔬菜種苗之非破壞性量測。博士論文。台北:台灣大學生物產業機電工程學研究所。 5.鄭宇哲,余仁方,林達德。2005。桃子與李子磁振影像中損傷區域之影像分割方法。農業機械學刊14(2):11-26。 6.Angulo, J.and J.Serra. 2003. Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics 19(5): 553-562. 7.Axon Instruments, Inc. 2003. GenePix Pro Support. Available at http://www.moleculardevices.com/pages/software/gn_genepix_pro.html. Access 1 June 2005. 8.Barra V. 2006. Robust segmentation and analysis of DNA microarray spots using an adaptive split and merge algorithm.. Computer Methods and Programs in Biomedicine 81:174-180. 9.Beucher, S. and F. Meyer. 1993. The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing, Optical Engineering 34: 433-481. 10.Davies, E. R. 1997. Machine Vision: Theory, Algorithm, Practicalities. 2nd ed., 211-228. San Diego: Academic Press. 11.Hirata, R. Jr., J. Barrera, R. F. Hashimoto, D. O. Dantas and G. H. Esteves. 2002. Segmentation of microarray images by mathematical morphology. Real-Time Imaging 8(6): 491-505. 12.Hough transform. 1994. Available at http://www.cogs.susx.ac.uk/users/davidy/teachvision/vision4.html. Access 12 April 2005. 13.Kim, J. H., H. Y. Kim, Y. S. Lee. 2001. A novel method using edge detection for signal extraction from cDNA microarray image analysis. Experimental and Molecular Medicine 33(2): 83-88. 14.Li, Q., C. Fraley, R. E. Bumgarner, K. Y. Yeung and A. E. Raftery. 2005. Donuts, scratches and blanks robust model-based segmentation of microarray images. Bioinformatics 21(12): 2875-2882. 15.Liew, A. W. C., H. Y. and M. Yang. 2003. Robust adaptive spot segmentation of DNA microarray images. Pattern Recognition 36(5): 1251-1254. 16.Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on Systems, man and cybernetics 9(1): 62-66. 17.Park, C. B., K.W. Lee and S.W. Lee. 2004. Automatic microarray image segmentation based on watershed transformation. In 'Proc. International Conference on Pattern Recognition' Cambridge, United Kingdom 3: 786-789. 18.Siddiqui, K. I., A. O. Hero and M. M. Siddiqui. 2002. Mathematical morphology applied to spot segmentation and quantification of gene microarray images. In 'Proc. International Conference on Signals, Systems and Computers' Pacific Grove, CA 1: 926 - 930. 19.Stekel, D. 2003. Microarray Bioinformatics. 1st ed., 62-72. USA:Cambridge University Press. 20.Vincent, L. and P. Soille. 1991. Watershed in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6): 583-598. 21.Wang, X. H, R. S. H. Istepanian and Y. H. Song. 2003. Microarray image enhancement by denoising using stationary wavelet transform. IEEE Transaction of NanoBioscience 2(4): 184-189. 22.Wu, S. and H. Yan. 2003. Microarray image processing based on clustering and morphological analysis. In “Proc. Asia Pacific Bioinformatics Conference” Adelaide, Australia 111-118. 23.Yang, Y. H., M. J. Buckley, S. Dudoit and T. P. Speed. 2002. Comparison of methods for image analysis on cDNA microarray data. Journal of Computational and Graphical Statistics 11: 108-136. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32324 | - |
dc.description.abstract | 本研究利用微陣列影像中雜交點為圓形的特性,以圓形霍氏轉換為中心法則對雜交點進行搜尋。由於圓形霍氏轉換對於所分析的影像具有極高的敏感度,故前處理中雜訊的去除佔了很重要的角色。在本研究當中,首先採用直方圖等化的技術,將影像對比拉大,使前景與背景較易被分離出來,再運用Otsu的二元化閥值搜尋,找出最佳閥值。對於晶片上既有雜訊,以區塊填補的演算法,將之填補、濾除,至此完成前背景的分離。接續將該影像進行水平與垂直投影,建立出網格,界定出每個雜交點可能出現的區域範圍。以Sobel運算子建出邊緣影像後,即可開始進行圓形霍氏轉換。圓的認定主要根據該影像所對應參數平面上的像素累積值,由於所需分析的影像複雜度較高,如何減少多餘的累計值,避免認定上的誤差是相當重要的。針對這部分,利用邊緣影像中梯度角的資訊,僅於參數平面上畫出與梯度角夾±90度的半圓。依此方法,不僅降低雜訊的干擾,判定圓所在的位置也更精準,也有效減少一半的運算時間。辨識出雜交點後,提供前、背景的像素強度資訊,便於微陣列資料的後續統計分析。將本研究建立之SPOTCapturer軟體的辨識結果與微陣列晶片影像常用分析軟體GenePix Pro 6.0比較之,SPOTCapturer準確率98.6%,召回率98.3%;GenePix Pro 6.0準確率97.5%,召回率97.9%,兩者以卡方檢定中之齊一性檢定驗證,證明確實存在顯著差異。對於雜交點的定位及尺寸估測方面,SPOTCapturer的準確度也較GenePix Pro 6.0高2.4%。取得訊號數值方面,考量到甜甜圈點造成的效應,加入前、背景間所應有的關聯性,除去範圍中的雜訊,以求獲得更精確之數值。綜合各項比較,透過SPOTCapturer,無論是在點的辨識或是值的擷取,的確可以做出更有效的分析,且不需給予分析影像繁複的晶片參數設定,提供了微陣列影像一個便利的分析平台。 | zh_TW |
dc.description.abstract | In this research, we used circular Hough transform to be the core method to search circular spots in microarray images. Due to high sensitivity of circular Hough transform to noises in an image, noise removal plays a very important role in image pre-processing. At first, we used histogram equalization to enhance the contrast of images before image thresholding. As a result, it is easier to separate foreground pixels from the background using the Otsu’s method to find the best threshold value. Following image binarization, we used blob algorithm to filter noise pixels. Then we developed grids by vertical and horizontal histogram projections to determine the possible area of every spot in an image. The binary image was further processed with the Sobel operator to obtain the edge image that was further processed with the circular Hough transform to determine the position and boundary of each spot. The determination of circular spots was based on the number of pixels in the accumulating cells in the parameter space. To reduce computation complexity, it is important to avoid identification errors by decreasing redundant accumulations. Using the gradient angle information in an edge image, we were able to use only half circle, +90 and -90 degrees between gradient angles, in the circular Hough transform. With this approach, we can not only reduce the influences of noises but also improve the accuracy of spot identification. The computation time was also reduced in half. After identifying the spots, the intensities of foreground and background pixels were used in the subsequent statistical analysis of microarray data. Comparing the performance of SPOTCapture software developed in this research with the commercialized software GenePix Pro 6.0, SPOTCapture has the precision rate of 98.6% and the recall rate of 98.3% while the precision rate and recall rate of GenePix Pro 6.0 was 97.5% and 97.9, respectively. The performance difference between these two approaches was statistically significant as the results were tested with the chi-square test. As for the determination of position and area of spots in a microarray image, SPOTCapture has a higher accuracy than the GenePix Pro 6.0 by 2.4%. Our method is also sensitive in resolving the problems of donut spots frequently occurred in microarray images. In addition, the parameter settings of our method are less complicated and require less manual intervention. Thus, with all these advantages, the SPOTCapture can be used as an efficient platform for the analyses of microarray images. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:42:50Z (GMT). No. of bitstreams: 1 ntu-95-R93631002-1.pdf: 3114796 bytes, checksum: 2e13266e31dc5ac8cff6a8663fc7ca47 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄
摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 viii 表目錄 viii 第一章 前言與研究目的 1 1.1研究背景 1 1.2研究目的 3 第二章 文獻探討 4 2.1 cDNA微陣列晶片影像 4 2.1.1 影像產生與其格式 4 2.1.2 微陣列影像常見問題 7 2.2 影像特徵擷取 9 2.2.1 辨識特徵位置 9 2.2.2 前景辨識 9 2.2.2.1 固定圓圈法 10 2.2.2.2 適應性圓圈法 10 2.2.2.3 適應性形狀法 11 2.2.2.4 長條統計圖 11 2.2.2.5 霍氏轉換 13 2.2.2.6 其他應用方法 14 2.2.3 背景資訊擷取 15 2.2.4 數值資訊計算 17 第三章 研究設備與方法 19 3.1 研究設備與材料 19 3.2 辨識軟體設計流程及概念 20 3.2.1 影像前處理 22 3.2.1.1 灰階轉換(Gray level transformation) 23 3.2.1.2直方圖等化 (Histogram equalization) 24 3.2.1.3 二元化閥值選取 ( Thresholding ) 26 3.2.1.4 區塊填補(Blob filling) 29 3.2.2 網格化 31 3.2.3 邊緣偵測(Edge detection) 36 3.2.4 圓形霍氏轉換(Circular Hough transform) 38 第四章 結果與討論 44 4.1 實驗結果 44 4.1.1 系統設定與建立測試基準 44 4.1.2 辨識點數比較 49 4.1.3 辨識點之定位與尺寸比較 54 4.1.4 辨識點之數值比較 56 4.1.5 甜甜圈點之標示與處理 58 4.2 實驗討論 60 第五章 結論與建議 68 5.1 結論 68 5.2 建議 70 參考文獻 71 圖目錄 圖2-1 單色微陣列影像 5 圖2-2 雙色微陣列影像 6 圖2-3 有灰塵雜訊的微陣列影像 7 圖2-4 有彗星尾及高背景的微陣列影像 8 圖2-5 有甜甜圈點的微陣列影像 8 圖2-6 應用GenePix作適應性圓圈分割 10 圖2-7 背景區域取樣示意 15 圖3-1 cDNA微陣列影像雜交點辨識流程 21 圖3-2 影像前處理去雜訊架構示意圖 22 圖3-3 不同灰階型式轉換造成之影響 23 圖3-4 等化對影像造成之影響 25 圖3-5 閥值選取之影響 28 圖3-6 區塊填補應用比較 29 圖3-7 區塊填補處理流程 30 圖3-8 網格化處理示意圖 33 圖3-9 網格化處理流程 34 圖3-10 j値自動選定與峰値數判定 35 圖3-11 像素位置示意 37 圖3-12 Sobel運算子 37 圖3-13 梯度及向量角示意 38 圖3-14 圓形霍氏轉換示意圖 40 圖3-15加速算法示意圖 42 圖3-16 圓形霍氏轉換辨識流程 43 圖4.1 SPOT Capturer 45 圖4-2 微陣列影像測試區塊示意圖 46 圖4-3 雜交點辨識結果比較 47 圖4-4 染劑濃度稀釋倍數與對應生成影像 48 圖4-5 GP與SC定位比較 54 圖4-6 甜甜圈點標示 59 圖4-7 經甜甜圈點處理造成之影響-紅光平均值 60 圖4-8 經甜甜圈點處理造成之影響-綠光平均值 61 圖4-9 經甜甜圈點處理造成之影響-紅光中位數 62 圖4-10 經甜甜圈點處理造成之影響-綠光中位數 63 圖4-11 區塊討論 – GP結果 65 圖4-12 區塊討論 – SC結果 66 表目錄 表2-1 微陣列影像分割方法與相關應用軟體 12 表4-1 辨識分類對應示意 49 表4-2 GP辨識結果分類 50 表4-3 SC辨識結果分類 50 表4-4 GP與SC辨識結果參數比較 51 表4-5 GP與SC辨識結果分配 52 表4-6 GP與SC辨識結果期望值 53 表4-7 GP與SC定位誤差之比較 55 表4-8 GP與SC相關係數變化 57 表4-9 爭議區塊辨識結果 67 | |
dc.language.iso | zh-TW | |
dc.title | 圓形霍氏轉換於cDNA微陣列晶片影像分析之應用 | zh_TW |
dc.title | Application of Circular Hough Transform on
cDNA Microarray Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林恩仲,陳倩瑜 | |
dc.subject.keyword | 微陣列影像,圓形霍氏轉換,影像分割, | zh_TW |
dc.subject.keyword | microarray image,circular Hough transform,image segmentation, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。