Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金全
dc.contributor.authorChia-Ching Wuen
dc.contributor.author吳佳靜zh_TW
dc.date.accessioned2021-06-13T03:40:41Z-
dc.date.available2012-08-04
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation第一章
(1) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
(2) Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937.
(3) David, M.H.; Keneeth, H. J.Phys.Chem.1993, 97, 4670
(4) Donald, D.D.; Lise, H. ; Kolbjern, H.; Marit, T J. Phys. Chem. 1995, 99, 9374
(5) Durig, J.R.; Davis, J.F.; Wang, A.I.; J. Mol. Struc. 1996, 375, 67
(6) Ahmed, M.; Blunt, D.; Chen, D.; Suits, A. G. J. Chem. Phys. 1997,106, 7617
(7) Alexey ,V. B.; Lev, N. K. J. Phys Chem. A. 2001,105,97
(8) Walker, L.; Prophet, H. J. Trans. Faraday Soc. 1967, 63, 879
(9) Chung, G. ; Y. Kwon, Chem. Phys. Lett. 2001, 333, 189
(10) Tuttle J. E. ; Rollefson G. K. J.Am.Chem.Soc. 1941, 63,1525
(11) Hiroko,S. ; Yoshiya, K. Chem. Soc. Japan. 1967, 40, 2742
(12) Hiroko,S. ; Ryoichi, S.; Yoshiya, K. Chem. Soc. Japan. 1968, 41, 1289
(13) Geng, Z.Y. ; Wang, D.M. ; Wang, W.C ;Dai ,G. L.; Lu L.L. ;Wang, H.Q. Chinese. J. Struc. Chem 2005, 11, 1334
(14) Jane, M.V.D.; Hogan, K.B. ; Miller,T.M. ; Viggiano, A.A J.Chem.Phys 2006, 124,184313
(15) Godunov, I.A.; Yakovlev, N.N ; Bokarev, S.I.; Abramenkov, A.V.; Maslov, D.V. J.Mol.Spec. 2009, 255, 39
(16) Carrie J. C. ;Shakeel S. D.; Joseph S. F., J. Phys. Chem. A, 2010,114,2806
(17) Huang, H.-Y.; Chuang, W.-T.; Sharma, R. C.; Hsu, C.-Y.; Lin, K.-C. J. Chem. Phys. 2004, 121, 5253.
(18) Hsu, C.-Y.; Huang, H.-Y.; Lin, K.-C. J. Chem. Phys. 2005, 123, 134312.
(19) Wei, P.-Y.; Chang, Y.-P.; Lee, W.-B.; Hu, Z.; Huang, H.-Y.; Lin, K.-C. J. Chem. Phys. 2006, 125, 133319.
(20) Wei, P.-Y.; Chang, Y.-P.; Lee, Y.-S.; Lee, W.-B.; Lin, K.-C. J. Chem. Phys. 2007, 126, 034311.
(21) Chang, Y.-P.; Lee, P.-C.; Lin, K.-C.; Huang, C. H.; Sun, B. J.; Chang, A. H. H. ChemPhysChem 2008, 9, 1137.
(22) Lee, P.-C.; Tsai, P.-Y.; Hsiao, M.-K.; Lin, K. -C.; Huang, C.-H.; Chang, A. H. H. Chem. Phys. Chem. 2009, 10, 672.
(23) Lee, H.-L.; Lee, P.-C.; Tsai, P.-Y.; Lin, K.-C.; Kao, K.-K.; Chen, P.-H. Chang, A. H. H. J. Chem. Phys. 2009, 130, 184308.
(24) Chen,S.Y.; Tsai P.Y.; Lin H.C., Wu C.C., Lin, K. C.; Sun B.J., Chang A.H.H. Chem.Phys. 2011, 134, 34315
(25) Vogt, R., Crutzen P.J., Sander R. , Nature , 1996, 383, 327
第二章
(1) Atkins, P.; Paula, J. d. In Physical Chemistry; Oxford University Press: USA, 2002; Chapter 16.
(2) Hönl, H.; London, F. Z. Phys. 1925, 33, 803.
(3) Hansson, A.; Watson, J. K. G. J. Mol. Spectrosc. 2005, 233, 169.
(4) Mulliken, R. S. Phys. Rev. 1934, 46, 549.
(5) Mulliken, R. S. Phys. Rev. 1940, 57, 500.
(6) Mulliken, R. S. J. Chem. Phys. 1971, 55, 288.
(7) Coxon, J. A. J. Mol. Spectrosc. 1971, 37, 39.
(8) Coxon, J. A. J. Quant. Spectrosc. Radiat. Transfer. 1972, 12, 639.
(9) Barrow, R. F.; Clark, T. C.; Coxon, J. A.; Yee, K. K. J. Mol. Spectrosc. 1974, 51, 428.
(10) Tellinghuisen, J. J. Chem. Phys. 1982, 76, 4736.
(11) Roy, R. J. L.; Macdonald, R. G.; Burns, G. J. Chem. Phys. 1976, 65, 1485.
(12) Lindeman, T. G.; Wiesenfeld, J. R. J. Chem. Phys. 1979, 70, 2882.
(13) Clyne, M. A. A.; Heaven, M. C.; Tellinghuisen, J. J. Chem. Phys. 1982, 76, 5341.
(14) Maric, D.; Burrows, J. P.; Moortgat, G. K. J. Photochem. Photobiol. A: Chem. 1994, 83, 179.
(15) Marter, T. A. V.; Lu, Y.; Heaven, M. C.; Hwang, E.; Dagdigian, P. J.; Tellinghuisen, J. J. Mol. Spectrosc. 1996, 177, 311.
第三章
(1) Herbelin, J. M.; McKay, J. A.; Kwok, M. A.; Ueunten, R. H.; Urevig, D. S.; Spencer, D. J.; Benard, D. J. Appl. Opt. 1980, 19, 144.
(2) Anderson, D. Z.; Frisch, J. C.; Masser, C. S. Appl. Opt. 1984, 23, 1238.
(3) O'Keefe, A.; Deacon, D. A. G. Rev. Sci. Instrum. 1988, 59, 2544.
(4) Wheeler, M. D.; Newman, S. M.; Orr-Ewing, A. J.; Ashfold, M. N. R. J. Chem. Soc., Faraday Trans. 1998, 94, 337
(5) Scherer, J. J.; Paul, J. B.; O'Keefe, A.; Saykally, R. J. Chem. Rev. 1997, 97, 25.
(6) Romanini, D.; Lehmann, K. K. J. Chem. Phys. 1993, 99, 6287.
(7) Jongma, R. T.; Boogaarts, M. G. H.; Holleman, I.; Meijer, G. Rev. Sci. Instrum. 1995, 66, 2821.
(8) Meijer, G.; Boogaarts, M. G. H.; Jongma, R. T.; Parker, D. H.; Wodtke,A. M. Chem. Phys. Lett. 1994, 217, 112.
(9) Zalicki, P.; Zare, R. N. J. Chem. Phys. 1995, 102, 2708.
(10) Hodges, J. T.; Looney, J. P.; Zee, R. D. v. Appl. Opt. 1996, 35, 4112.
(11) Matin, J.; Paldus, B. A.; Zaliki, P.; Wahl, E. H.; Owano, T. G.; HArris, J. S.;Kruger, C. H.; Zare, R. N. Chem. Phys. Lett. 1996, 258, 63.
(12) Demtroder, W., Laser Spectroscopy. Springer Verlag: New York, 1981; p 163.
(13) Berden, G.; Peeters, R.; Meijer, G. Int. Rev. Phys. Chem. 2000, 19, 565.
(14) Scherer, J. J.; Paul, J. B.; O'Keefe, A.; Saykally, R. J. Chem. Rev. 1997, 97, 25.
第四章
(1) Green, R. B. J. Chem. Educ. 1977, 54, A365.
(2) Staudinger, H . ; Anthes, E. Ber, 1913, 46 ,1426
(3) Oxalyl bromide http://chemicalland21.com/industrialchem/organic/OXALYL%20BROMIDE.htm
(4) http://sales.hamamatsu.com/assets/pdf/parts_R/R928_R955_TPMS100 1E07.pdf
第五章
(1) Focsa, C.; Li, H.; Bernath, P. F. J. Mol. Spectrosc. 2000, 200, 104.
(2) Gerstenkorn, S.; Luc, P. J. Phys. France 1989, 50, 1417.
(3) Coxon, J. A. J. Quant. Spectrosc. Radiat. Transfer. 1972, 12, 639.
(4) Wei, P.-Y.; Chang, Y.-P.; Lee, Y.-S.; Lee, W.-B.; Lin, K.-C. J. Chem.
Phys. 2007, 126, 034311.
(5) Wei, P.-Y.; Chang, Y.-P.; Lee, W.-B.; Hu, Z.; Huang, H.-Y.; Lin, K.-C.
J. Chem. Phys. 2006, 125, 133319.
(6) Barrow, R. F.; Clack, T. C.; Coxon, J. A.; Yee, K. K. J. Mol. Spectrosc. 1974,51, 428.
(7) H .Shimada, R. Shimada, and Y. Kanda , Bull. Chem. Soc. Jpn. 41, 1289 (1968).
(8) A. V. Baklanov and L. N. Krasnoperov, J. Phys. Chem. A 105, 97( 2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32284-
dc.description.abstract腔體震盪光譜法是一項新的吸收光譜技術,此方法是利用量測穿透過一對高反射率鏡面所組成的腔體的雷射光衰減速率,將雷射光頻率對衰減速率做圖,即可得到吸收光譜。由於它擁有高靈敏度、架設簡單…等優點,因此成為在氣態微量分析上良好的工具。在本篇論文中,我們使用248 nm的準分子雷射光解乙二醯二溴分子,利用CRDS的技術偵測溴分子 的吸收躍遷來觀看產生溴分子的離去通道。藉由能量相依和壓力相依的實驗驗證我們觀測到的溴分子係由乙二醯二溴吸收單一光子的解離過程。我們從溴分子 的躍遷吸收光譜圖,去分析溴分子在基態的振動分支比,獲得1:0.65±0.09:0.34±0.07 ,這表示我們觀測到的溴分子是屬於比較熱的振動態,振動溫度為893±31 K。對於光解乙二醯二溴分子觀測到的溴分子離去通道,與已知量子產率的化合物比較,決定出其對應的量子產率值為0.06±0.03。zh_TW
dc.description.abstractCavity Ring-Down Spectroscopy (CRDS) has been widely applied in the studies of spectroscopy, kinetics, dynamics, and photochemistry in the condensed or gas phases. The method is based on the measurement of the decay rate of a pulse light trapped in an optical cavity which is formed by a pair of highly reflective(R>99.9%) mirrors.
By using cavity ring-down spectroscopy technique, we have observed the channel leading to Br2 molecular elimination following photodissociation of oxalyl bromide at 248 nm. Power dependence measurements are examined, supporting that Br2 molecule were created by the following photodissociation of C2O2Br2, via a single-photon process. The nascent vibrational populations for v” = 0,1, and 2 levels are obtained with a population ratio of 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann-like vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br2 elimination reaction is determined to be 0.06 ± 0.03.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:40:41Z (GMT). No. of bitstreams: 1
ntu-100-R98223146-1.pdf: 3072740 bytes, checksum: ce8b71710133871021fa233f0555f122 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
謝誌………………………………………………………………….........I
中文摘要…………………………………………………………….......II
英文摘要………………………………………………………………..III
圖目錄…………………………………………………………………..VI
表目錄…………………………………………………………………..XI
第一章 序論……………………………………………………………1
參考文獻…………………………………………………………………6
第二章 雙原子光譜……………………………………………………8
2-1雙原子分子能量……………………………………………………..8
2-2法蘭克-康登因子與霍爾倫敦因子………………………………….9
2-3 鹵素分子的躍遷…………………………………………………...11
2-4 溴分子的吸收光譜………………………………………………...15
參考文獻………………………………………………………………..17
第三章 腔體震盪光譜法……………………………………………..18
3-1 歷史與發展………………………………………………………...18
3-2 基本原理…………………………………………………………...21
3-3 數據分析…………………………………………………………...24
3-4 腔體震盪光譜法的靈敏度………………………………………...28
3-5 腔體震盪光譜法變因……………………………………………...30
參考文獻………………………………………………………………..36
第四章 實驗部份………………………………………………………37
4-1 實驗架設…………………………………………………………...37
4-2 實驗內容…………………………………………………………...44
參考文獻……………………………………………………………......48
第五章 結果與討論……………………………………………………49
5-1 光分解產物的確認………………………………………………...49
5-2 溴分子解離通道確認……………………………………………...56
5-3 溴分子的初生態振動分佈………………………………………...61
5-4 溴分子離去通道的量子產率……………………………………...67
5-5溫度效應以及Ar效應對產物的影響……………………………..70
5-6 光解路徑…………………………………………………………...73
參考文獻………………………………………………………………..77
結論……………………………………………………………………..78
dc.language.isozh-TW
dc.subject量子產率zh_TW
dc.subject腔體震盪光譜法zh_TW
dc.subject乙二醯二溴zh_TW
dc.subject光分解zh_TW
dc.subject溴分子zh_TW
dc.subjectBr2 moleculeen
dc.subjectOxalyl bromideen
dc.subjectCavity Ring-Down Spectroscopyen
dc.subjectPhotodissociationen
dc.subjectQuantum yielden
dc.title腔體震盪光譜法於乙二醯二溴的光分解研究zh_TW
dc.titlePhotodissociation of oxalyl bromide by using cavity ring
down spectroscopy
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陸維作,曾文碧
dc.subject.keyword乙二醯二溴,腔體震盪光譜法,量子產率,光分解,溴分子,zh_TW
dc.subject.keywordCavity Ring-Down Spectroscopy,Oxalyl bromide,Photodissociation,Quantum yield,Br2 molecule,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2011-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved