請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32231完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鑫 | |
| dc.contributor.author | Pei-Yu Chu | en |
| dc.contributor.author | 朱珮瑜 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:37:56Z | - |
| dc.date.available | 2007-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | 參考文獻
Al, R.H., Xie, Y., Wang, Y., and Hagedorn, C.H. 1998. Expression of recombinant hepatitis C virus non-structural protein 5B in Escherichia coli. Virus Res 53(2): 141-149. Ali, N., Pruijn, G.J., Kenan, D.J., Keene, J.D., and Siddiqui, A. 2000. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 275(36): 27531-27540. Alter, H.J., Holland, P.V., Morrow, A.G., Purcell, R.H., Feinstone, S.M., and Moritsugu, Y. 1975. Clinical and serological analysis of transfusion-associated hepatitis. Lancet 2(7940): 838-841. Asabe, S.I., Tanji, Y., Satoh, S., Kaneko, T., Kimura, K., and Shimotohno, K. 1997. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J Virol 71(1): 790-796. Asano, K., Kinzy, T.G., Merrick, W.C., and Hershey, J.W. 1997a. Conservation and diversity of eukaryotic translation initiation factor eIF3. J Biol Chem 272(2): 1101-1109. Asano, K., Merrick, W.C., and Hershey, J.W. 1997b. The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J Biol Chem 272(38): 23477-23480. Asano, K., Vornlocher, H.P., Richter-Cook, N.J., Merrick, W.C., Hinnebusch, A.G., and Hershey, J.W. 1997c. Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 272(43): 27042-27052. Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. 1993. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol 67(7): 3835-3844. Bartenschlager, R., Ahlborn-Laake, L. L., Mous, J., and Jacobsen, H. 1994. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68(8): 5045-5055. Bartenschlager, R. and Lohmann, V. 2000. Replication of the hepatitis C virus. Baillieres Best Pract Res Clin Gastroenterol 14(2): 241-254. Basu, A., Steele, R., Ray, R., and Ray, R.B. 2004. Functional properties of a 16 kDa protein translated from an alternative open reading frame of the core-encoding genomic region of hepatitis C virus. J Gen Virol 85(Pt 8): 2299-2306. Behrens, S.E., Tomei, L., and De Francesco, R. 1996. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15(1): 12-22. Block, K.L., Vornlocher, H.P., and Hershey, J.W. 1998. Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. J Biol Chem 273(48): 31901-31908. Bouffard, P., Bartenschlager, R., Ahlborn-Laake, L., Mous, J., Roberts, N., and Jacobsen, H. 1995. An in vitro assay for hepatitis C virus NS3 serine proteinase. Virology 209(1): 52-59. Bradley, D.W., McCaustland, K.A., Cook, E.H., Schable, C.A., Ebert, J.W., and Maynard, J.E. 1985. Posttransfusion non-A, non-B hepatitis in chimpanzees. Physicochemical evidence that the tubule-forming agent is a small, enveloped virus. Gastroenterology 88(3): 773-779. Browning, K.S., Gallie, D.R., Hershey, J.W., Hinnebusch, A.G., Maitra, U., Merrick, W.C., and Norbury, C. 2001. Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends Biochem Sci 26(5): 284. Bukh, J., Miller, R.H., Kew, M.C., and Purcell, R.H. 1993. Hepatitis C virus RNA in southern African blacks with hepatocellular carcinoma. Proc Natl Acad Sci U S A 90(5): 1848-1851. Bukh, J., Miller, R.H., and Purcell, R.H. 1995. Genetic heterogeneity of the hepatitis C virus. Princess Takamatsu Symp 25: 75-91. Bukh, J., Purcell, R.H., and Miller, R.H. 1992. Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci U S A 89(11): 4942-4946. Bukh, J., Purcell, R.H., and Miller, R.H. 1994. Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proc Natl Acad Sci U S A 91(17): 8239-8243. Buratti, E., Tisminetzky, S., Zotti, M., and Baralle, F.E. 1998. Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res 26(13): 3179-3187. Chamberlain, R.W., Adams, N.J., Taylor, L.A., Simmonds, P., and Elliott, R.M. 1997. The complete coding sequence of hepatitis C virus genotype 5a, the predominant genotype in South Africa. Biochem Biophys Res Commun 236(1): 44-49. Chang, J., Yang, S.H., Cho, Y.G., Hwang, S.B., Hahn, Y.S., and Sung, Y.C. 1998. Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene. J Virol 72(4): 3060-3065. Chang, K.S. and Luo, G. 2006. The polypyrimidine tract-binding protein (PTB) is required for efficient replication of hepatitis C virus (HCV) RNA. Virus Res 115(1): 1-8. Chang, S.C., Cheng, J.C., Kou, Y.H., Kao, C.H., Chiu, C.H., Wu, H.Y., and Chang, M.F. 2000. Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J Virol 74(20): 9732-9737. Chang, S.C., Yen, J.H., Kang, H.Y., Jang, M.H., and Chang, M.F. 1994. Nuclear localization signals in the core protein of hepatitis C virus. Biochem Biophys Res Commun 205(2): 1284-1290. Chen, C.M., You, L.R., Hwang, L.H., and Lee, Y.H. 1997. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J Virol 71(12): 9417-9426. Chen, P.J., Lin, M.H., Tai, K.F., Liu, P.C., Lin, C.J., and Chen, D.S. 1992. The Taiwanese hepatitis C virus genome: sequence determination and mapping the 5' termini of viral genomic and antigenomic RNA. Virology 188(1): 102-113. Choi, H.B., Kim, Y.G., and Oh, J.W. 2003. Biochemical properties of full-length hepatitis C virus RNA-dependent RNA polymerase expressed in insect cells. Exp Mol Med 35(6): 475-485. Choukhi, A., Pillez, A., Drobecq, H., Sergheraert, C., Wychowski, C., and Dubuisson, J. 1999. Characterization of aggregates of hepatitis C virus glycoproteins. J Gen Virol 80 ( Pt 12): 3099-3107. Chu, C.M., Yeh, C.T., and Liaw, Y.F. 1999. Fulminant hepatic failure in acute hepatitis C: increased risk in chronic carriers of hepatitis B virus. Gut 45(4): 613-617. Collier, A.J., Gallego, J., Klinck, R., Cole, P.T., Harris, S.J., Harrison, G.P., Aboul-Ela, F., Varani, G., and Walker, S. 2002. A conserved RNA structure within the HCV IRES eIF3-binding site. Nat Struct Biol 9(5): 375-380. Dimasi, N., Pasquo, A., Martin, F., Di Marco, S., Steinkuhler, C., Cortese, R., and Sollazzo, M. 1998. Engineering, characterization and phage display of hepatitis C virus NS3 protease and NS4A cofactor peptide as a single-chain protein. Protein Eng 11(12): 1257-1265. Domitrovich, A.M., Diebel, K.W., Ali, N., Sarker, S., and Siddiqui, A. 2005. Role of La autoantigen and polypyrimidine tract-binding protein in HCV replication. Virology 335(1): 72-86. Eckart, M.R., Selby, M., Masiarz, F., Lee, C., Berger, K., Crawford, K., Kuo, C., Kuo, G., Houghton, M., and Choo, Q.L. 1993. The hepatitis C virus encodes a serine protease involved in processing of the putative nonstructural proteins from the viral polyprotein precursor. Biochem Biophys Res Commun 192(2): 399-406. Enomoto, N., Sakuma, I., Asahina, Y., Kurosaki, M., Murakami, T., Yamamoto, C., Ogura, Y., Izumi, N., Marumo, F., and Sato, C. 1996. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334(2): 77-81. Ferrari, E., Wright-Minogue, J., Fang, J.W., Baroudy, B.M., Lau, J.Y., and Hong, Z. 1999. Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli. J Virol 73(2): 1649-1654. Friebe, P. and Bartenschlager, R. 2002. Genetic analysis of sequences in the 3' nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76(11): 5326-5338. Fried, M.W., Shiffman, M.L., Reddy, K.R., Smith, C., Marinos, G., Goncales, F.L., Jr., Haussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J., and Yu, J. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347(13): 975-982. Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F.B., and Katayama, K. 2001. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J Biol Chem 276(24): 20824-20826. Ghosh, A.K., Steele, R., Meyer, K., Ray, R., and Ray, R.B. 1999. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol 80 ( Pt 5): 1179-1183. Gontarek, R.R., Gutshall, L.L., Herold, K.M., Tsai, J., Sathe, G.M., Mao, J., Prescott, C., and Del Vecchio, A.M. 1999. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic Acids Res 27(6): 1457-1463. Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M., and Rice, C.M. 1993a. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol 67(5): 2832-2843. Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M., and Rice, C.M. 1993b. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 90(22): 10583-10587. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S.M., and Rice, C.M. 1993c. Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol 67(3): 1385-1395. Hahm, B., Kim, Y.K., Kim, J.H., Kim, T.Y., and Jang, S.K. 1998. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J Virol 72(11): 8782-8788. Hajimorad, M.R., Kurath, G., Randles, J.W., and Francki, R.I. 1991. Change in phenotype and encapsidated RNA segments of an isolate of alfalfa mosaic virus: an influence of host passage. J Gen Virol 72 ( Pt 12): 2885-2893. Han, J.H., Shyamala, V., Richman, K.H., Brauer, M.J., Irvine, B., Urdea, M.S., Tekamp-Olson, P., Kuo, G., Choo, Q.L., and Houghton, M. 1991. Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5' untranslated region and poly(A) tails at the 3' end. Proc Natl Acad Sci U S A 88(5): 1711-1715. Hellen, C.U., Witherell, G.W., Schmid, M., Shin, S.H., Pestova, T.V., Gil, A., and Wimmer, E. 1993. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A 90(16): 7642-7646. Hijikata, M., Mizushima, H., Akagi, T., Mori, S., Kakiuchi, N., Kato, N., Tanaka, T., Kimura, K., and Shimotohno, K. 1993. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 67(8): 4665-4675. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S. 1982. Rapid evolution of RNA genomes. Science 215(4540): 1577-1585. Honda, M., Beard, M.R., Ping, L.H., and Lemon, S.M. 1999. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73(2): 1165-1174. Honda, M., Brown, E.A., and Lemon, S.M. 1996. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2(10): 955-968. Hoofnagle, J.H. 1997. Hepatitis C: the clinical spectrum of disease. Hepatology 26(3 Suppl 1): 15S-20S. Hussy, P., Langen, H., Mous, J., and Jacobsen, H. 1996. Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224(1): 93-104. Hwang, L.H., Hsieh, C.L., Yen, A., Chung, Y.L., and Chen, D.S. 1998. Involvement of the 5' proximal coding sequences of hepatitis C virus with internal initiation of viral translation. Biochem Biophys Res Commun 252(2): 455-460. Hwang, S.J., Lee, S.D., Chan, C.Y., Lu, R.H., and Lo, K.J. 1994. A randomized controlled trial of recombinant interferon alpha-2b in the treatment of Chinese patients with acute post-transfusion hepatitis C. J Hepatol 21(5): 831-836. Ishida, C., Matsumoto, K., Fukada, K., Matsushita, K., Shiraki, H., and Maeda, Y. 1993. Detection of antibodies to hepatitis C virus (HCV) structural proteins in anti-HCV-positive sera by an enzyme-linked immunosorbent assay using synthetic peptides as antigens. J Clin Microbiol 31(4): 936-940. Ishido, S., Fujita, T., and Hotta, H. 1998. Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus. Biochem Biophys Res Commun 244(1): 35-40. Ishii, K., Tanaka, Y., Yap, C.C., Aizaki, H., Matsuura, Y., and Miyamura, T. 1999. Expression of hepatitis C virus NS5B protein: characterization of its RNA polymerase activity and RNA binding. Hepatology 29(4): 1227-1235. Ito, T. and Lai, M.M. 1999. An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3'-untranslated sequence. Virology 254(2): 288-296. Ito, T., Tahara, S.M., and Lai, M.M. 1998. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72(11): 8789-8796. Izumi, R.E., Valdez, B., Banerjee, R., Srivastava, M., and Dasgupta, A. 2001. Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res 76(1): 17-29. Jang, S.K. and Wimmer, E. 1990. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4(9): 1560-1572. Johnson, K.R., Merrick, W.C., Zoll, W.L., and Zhu, Y. 1997. Identification of cDNA clones for the large subunit of eukaryotic translation initiation factor 3. Comparison of homologues from human, Nicotiana tabacum, Caenorhabditis elegans, and Saccharomyces cerevisiae. J Biol Chem 272(11): 7106-7113. Jubin, R., Vantuno, N.E., Kieft, J.S., Murray, M.G., Doudna, J.A., Lau, J.Y., and Baroudy, B.M. 2000. Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol 74(22): 10430-10437. Kaito, M., Watanabe, S., Tsukiyama-Kohara, K., Yamaguchi, K., Kobayashi, Y., Konishi, M., Yokoi, M., Ishida, S., Suzuki, S., and Kohara, M. 1994. Hepatitis C virus particle detected by immunoelectron microscopic study. J Gen Virol 75 ( Pt 7): 1755-1760. Kato, N., Ootsuyama, Y., Ohkoshi, S., Nakazawa, T., Sekiya, H., Hijikata, M., and Shimotohno, K. 1992. Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. Biochem Biophys Res Commun 189(1): 119-127. Kato, N., Yoshida, H., Kioko Ono-Nita, S., Kato, J., Goto, T., Otsuka, M., Lan, K., Matsushima, K., Shiratori, Y., and Omata, M. 2000. Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 32(2): 405-412. Kieft, J.S., Zhou, K., Grech, A., Jubin, R., and Doudna, J.A. 2002. Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol 9(5): 370-374. Koch, J.O. and Bartenschlager, R. 1999. Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J Virol 73(9): 7138-7146. Kolykhalov, A.A., Mihalik, K., Feinstone, S.M., and Rice, C.M. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol 74(4): 2046-2051. Kozak, M. 1989. The scanning model for translation: an update. J Cell Biol 108(2): 229-241. Lai, M.Y., Kao, J.H., Yang, P.M., Wang, J.T., Chen, P.J., Chan, K.W., Chu, J.S., and Chen, D.S. 1996. Long-term efficacy of ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology 111(5): 1307-1312. Lam, A.M., Rypma, R.S., and Frick, D.N. 2004. Enhanced nucleic acid binding to ATP-bound hepatitis C virus NS3 helicase at low pH activates RNA unwinding. Nucleic Acids Res 32(13): 4060-4070. Le, S.Y., Liu, W.M., and Maizel, J.V., Jr. 1998. Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses. Virus Genes 17(3): 279-295. Liang, T.J., Rehermann, B., Seeff, L.B., and Hoofnagle, J.H. 2000. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann Intern Med 132(4): 296-305. Liu, Q., Tackney, C., Bhat, R.A., Prince, A.M., and Zhang, P. 1997. Regulated processing of hepatitis C virus core protein is linked to subcellular localization. J Virol 71(1): 657-662. Lo, S.Y., Selby, M., Tong, M., and Ou, J.H. 1994. Comparative studies of the core gene products of two different hepatitis C virus isolates: two alternative forms determined by a single amino acid substitution. Virology 199(1): 124-131. Lukavsky, P.J., Kim, I., Otto, G.A., and Puglisi, J.D. 2003. Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10(12): 1033-1038. Macejak, D.G. and Sarnow, P. 1991. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature 353(6339): 90-94. Marcellin, P. 1999. Hepatitis C: the clinical spectrum of the disease. J Hepatol 31 Suppl 1: 9-16. Martell, M., Esteban, J.I., Quer, J., Genesca, J., Weiner, A., Esteban, R., Guardia, J., and Gomez, J. 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 66(5): 3225-3229. Martire, G., Viola, A., Iodice, L., Lotti, L.V., Gradini, R., and Bonatti, S. 2001. Hepatitis C virus structural proteins reside in the endoplasmic reticulum as well as in the intermediate compartment/cis-Golgi complex region of stably transfected cells. Virology 280(2): 176-182. Matsumoto, M., Hsieh, T.Y., Zhu, N., VanArsdale, T., Hwang, S.B., Jeng, K.S., Gorbalenya, A.E., Lo, S.Y., Ou, J.H., Ware, C.F., and Lai, M.M. 1997. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor. J Virol 71(2): 1301-1309. McLauchlan, J. 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7(1): 2-14. Meerovitch, K., Svitkin, Y.V., Lee, H.S., Lejbkowicz, F., Kenan, D.J., Chan, E.K., Agol, V.I., Keene, J.D., and Sonenberg, N. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67(7): 3798-3807. Methot, N., Rom, E., Olsen, H., and Sonenberg, N. 1997. The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J Biol Chem 272(2): 1110-1116. Moradpour, D., Brass, V., Gosert, R., Wolk, B., and Blum, H.E. 2002. [Molecular virology of hepatitis C]. Schweiz Rundsch Med Prax 91(51-52): 2247-2253. Moradpour, D., Englert, C., Wakita, T., and Wands, J.R. 1996. Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222(1): 51-63. Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Matsuura, Y., Kimura, S., Miyamura, T., and Koike, K. 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4(9): 1065-1067. Neddermann, P., Clementi, A., and De Francesco, R. 1999. Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J Virol 73(12): 9984-9991. Odreman-Macchioli, F.E., Tisminetzky, S.G., Zotti, M., Baralle, F.E., and Buratti, E. 2000. Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Res 28(4): 875-885. Ogata, N., Alter, H.J., Miller, R.H., and Purcell, R.H. 1991. Nucleotide sequence and mutation rate of the H strain of hepatitis C virus. Proc Natl Acad Sci U S A 88(8): 3392-3396. Oh, J.W., Ito, T., and Lai, M.M. 1999. A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 73(9): 7694-7702. Oh, J.W., Sheu, G.T., and Lai, M.M. 2000. Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template. J Biol Chem 275(23): 17710-17717. Oh, S.K. and Sarnow, P. 1993. Gene regulation: translational initiation by internal ribosome binding. Curr Opin Genet Dev 3(2): 295-300. Okamoto, H., Oh, C., and Nakano, K. 1990. Possible involvement of adenosine 3':5'-cyclic monophosphate and extracellular calcium ions in histamine stimulation of interleukin-1 release from macrophage-like P388D1 cells. Immunology 70(2): 186-190. Park, J.S., Yang, J.M., and Min, M.K. 2000. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem Biophys Res Commun 267(2): 581-587. Pestova, T.V., Hellen, C.U., and Wimmer, E. 1991. Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5' nontranslated region and involvement of a cellular 57-kilodalton protein. J Virol 65(11): 6194-6204. Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J., and Hellen, C.U. 1998. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12(1): 67-83. Pflugheber, J., Fredericksen, B., Sumpter, R., Jr., Wang, C., Ware, F., Sodora, D.L., and Gale, M., Jr. 2002. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc Natl Acad Sci U S A 99(7): 4650-4655. Phan, L., Zhang, X., Asano, K., Anderson, J., Vornlocher, H.P., Greenberg, J.R., Qin, J., and Hinnebusch, A.G. 1998. Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18(8): 4935-4946. Pilipenko, E.V., Gmyl, A.P., Maslova, S.V., Svitkin, Y.V., Sinyakov, A.N., and Agol, V.I. 1992. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68(1): 119-131. Poch, O., Sauvaget, I., Delarue, M., and Tordo, N. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8(12): 3867-3874. Ravaggi, A., Zonaro, A., Marin, M.G., Puoti, M., Albertini, A., and Cariani, E. 1994. Distribution of viral genotypes in Italy determined by hepatitis C virus typing by DNA immunoassay. J Clin Microbiol 32(9): 2280-2284. Ray, R.B., Lagging, L.M., Meyer, K., and Ray, R. 1996. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 70(7): 4438-4443. Ray, R.B., Lagging, L.M., Meyer, K., Steele, R., and Ray, R. 1995. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res 37(3): 209-220. Ray, R.B., Steele, R., Meyer, K., and Ray, R. 1997. Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 272(17): 10983-10986. Reed, K.E., Grakoui, A., and Rice, C.M. 1995. Hepatitis C virus-encoded NS2-3 protease: cleavage-site mutagenesis and requirements for bimolecular cleavage. J Virol 69(7): 4127-4136. Reynolds, J.E., Kaminski, A., Carroll, A.R., Clarke, B.E., Rowlands, D.J., and Jackson, R.J. 1996. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2(9): 867-878. Rosenberg, S. 2001. Recent advances in the molecular biology of hepatitis C virus. J Mol Biol 313(3): 451-464. Ruggieri, A., Harada, T., Matsuura, Y., and Miyamura, T. 1997. Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology 229(1): 68-76. Saito, I., Miyamura, T., Ohbayashi, A., Harada, H., Katayama, T., Kikuchi, S., Watanabe, Y., Koi, S., Onji, M., Ohta, Y., and et al. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A 87(17): 6547-6549. Santolini, E., Migliaccio, G., and La Monica, N. 1994. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68(6): 3631-3641. Santolini, E., Pacini, L., Fipaldini, C., Migliaccio, G., and Monica, N. 1995. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J Virol 69(12): 7461-7471. Shih, C.M., Lo, S.J., Miyamura, T., Chen, S.Y., and Lee, Y.H. 1993. Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J Virol 67(10): 5823-5832. Shimizu, Y.K., Igarashi, H., Kiyohara, T., Cabezon, T., Farci, P., Purcell, R.H., and Yoshikura, H. 1996. A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures. Virology 223(2): 409-412. Shirota, Y., Luo, H., Qin, W., Kaneko, S., Yamashita, T., Kobayashi, K., and Murakami, S. 2002. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J Biol Chem 277(13): 11149-11155. Simmonds, P. 2001. Reconstructing the origins of human hepatitis viruses. Philos Trans R Soc Lond B Biol Sci 356(1411): 1013-1026. Simmonds, P. and Smith, D.B. 1999. Structural constraints on RNA virus evolution. J Virol 73(7): 5787-5794. Siridechadilok, B., Fraser, C.S., Hall, R.J., Doudna, J.A., and Nogales, E. 2005. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310(5753): 1513-1515. Sizova, D.V., Kolupaeva, V.G., Pestova, T.V., Shatsky, I.N., and Hellen, C.U. 1998. Specific interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72(6): 4775-4782. Spaete, R.R., Alexander, D., Rugroden, M.E., Choo, Q.L., Berger, K., Crawford, K., Kuo, C., Leng, S., Lee, C., Ralston, R., and et al. 1992. Characterization of the hepatitis C virus E2/NS1 gene product expressed in mammalian cells. Virology 188(2): 819-830. Spahn, C.M., Kieft, J.S., Grassucci, R.A., Penczek, P.A., Zhou, K., Doudna, J.A., and Frank, J. 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291(5510): 1959-1962. Spangberg, K. and Schwartz, S. 1999. Poly(C)-binding protein interacts with the hepatitis C virus 5' untranslated region. J Gen Virol 80 ( Pt 6): 1371-1376. Takahasi, K. and Sawasaki, Y. 1992. Rare spontaneously transformed human endothelial cell line provides useful research tool. In Vitro Cell Dev Biol 28A(6): 380-382. Takamizawa, A., Mori, C., Fuke, I., Manabe, S., Murakami, S., Fujita, J., Onishi, E., Andoh, T., Yoshida, I., and Okayama, H. 1991. Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol 65(3): 1105-1113. Tanji, Y., Hijikata, M., Satoh, S., Kaneko, T., and Shimotohno, K. 1995. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol 69(3): 1575-1581. Tomei, L., Failla, C., Vitale, R.L., Bianchi, E., and De Francesco, R. 1996. A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 protease. J Gen Virol 77 ( Pt 5): 1065-1070. Toyoda, H., Koide, N., Kamiyama, M., Tobita, K., Mizumoto, K., and Imura, N. 1994. Host factors required for internal initiation of translation on poliovirus RNA. Arch Virol 138(1-2): 1-15. Varaklioti, A., Vassilaki, N., Georgopoulou, U., and Mavromara, P. 2002. Alternate translation occurs within the core coding region of the hepatitis C viral genome. J Biol Chem 277(20): 17713-17721. Walewski, J.L., Keller, T.R., Stump, D.D., and Branch, A.D. 2001. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7(5): 710-721. Wang, C., Le, S.Y., Ali, N., and Siddiqui, A. 1995. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA 1(5): 526-537. Wang, C., Sarnow, P., and Siddiqui, A. 1993. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67(6): 3338-3344. Wang, H., Shen, X.T., Ye, R., Lan, S.Y., Xiang, L., and Yuan, Z.H. 2005. Roles of the polypyrimidine tract and 3' noncoding region of hepatitis C virus RNA in the internal ribosome entry site-mediated translation. Arch Virol 150(6): 1085-1099. Wardell, A.D., Errington, W., Ciaramella, G., Merson, J., and McGarvey, M.J. 1999. Characterization and mutational analysis of the helicase and NTPase activities of hepatitis C virus full-length NS3 protein. J Gen Virol 80 ( Pt 3): 701-709. Weiner, A.J., Brauer, M.J., Rosenblatt, J., Richman, K.H., Tung, J., Crawford, K., Bonino, F., Saracco, G., Choo, Q.L., Houghton, M., and et al. 1991. Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180(2): 842-848. Xu, Z., Choi, J., Yen, T.S., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M.J., and Ou, J. 2001. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 20(14): 3840-3848. Yamada, N., Tanihara, K., Takada, A., Yorihuzi, T., Tsutsumi, M., Shimomura, H., Tsuji, T., and Date, T. 1996. Genetic organization and diversity of the 3' noncoding region of the hepatitis C virus genome. Virology 223(1): 255-261. Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Murakami, S. 1998. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 273(25): 15479-15486. Yasui, K., Wakita, T., Tsukiyama-Kohara, K., Funahashi, S.I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J.R., and Kohara, M. 1998. The native form and maturation process of hepatitis C virus core protein. J Virol 72(7): 6048-6055. Yen, J.H., Chang, S.C., Hu, C.R., Chu, S.C., Lin, S.S., Hsieh, Y.S., and Chang, M.F. 1995. Cellular proteins specifically bind to the 5'-noncoding region of hepatitis C virus RNA. Virology 208(2): 723-732. Yi, M. and Lemon, S.M. 2003. Structure-function analysis of the 3' stem-loop of hepatitis C virus genomic RNA and its role in viral RNA replication. RNA 9(3): 331-345. Zhao, W.D. and Wimmer, E. 2001. Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol 75(8): 3719-3730. Zhou, C., Arslan, F., Wee, S., Krishnan, S., Ivanov, A.R., Oliva, A., Leatherwood, J., and Wolf, D.A. 2005. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 3: 14. Zhu, N., Khoshnan, A., Schneider, R., Matsumoto, M., Dennert, G., Ware, C., and Lai, M.M. 1998. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 72(5): 3691-3697. Zibert, A., Schreier, E., and Roggendorf, M. 1995. Antibodies in human sera specific to hypervariable region 1 of hepatitis C virus can block viral attachment. Virology 208(2): 653-661. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32231 | - |
| dc.description.abstract | C 型肝炎病毒 (hepatitis C virus, HCV) 為非 A 非 B 型肝炎的主要致病原,與慢性肝炎、肝硬化及肝細胞癌的形成密切相關。HCV 為一正向單股 RNA 病毒,基因體全長約 9600 個核苷酸,包含 5' 端非轉譯區 (noncoding region, NCR)、可轉譯出約 3010 個胺基酸多蛋白質之開放編閱架構、以及 3' 端非轉譯區,其中 5' 端非轉譯區在各個不同病毒分離株之間具有高度保守性。HCV 的轉譯起始是由 internal ribosome entry site (IRES) 所調控,其範圍幾乎涵蓋整個 5' 端非轉譯區,並延伸至轉譯起始點後核心蛋白質的前 10 個胺基酸相對序列。IRES 可形成穩定的二級和三級結構,在功能上取代許多轉譯起始因子,能直接與 40S 核醣體次單元、真核細胞轉譯起始因子 Ⅲ (eukaryotic translation initiation factor 3, eIF3),以及其他許多細胞因子進行交互作用。然而,目前對於 HCV 內部起始轉譯的詳細機制仍不完全清楚。
真核細胞轉譯起始因子 Ⅲ 為一 800 kDa 之巨大複合體,包含至少 13 個不同的次單元,其中次單元 p170、p116、p66 及 p47會與 C 型肝炎病毒的 IRES 有專一性的結合。根據二級結構預測,p116 在靠近氨基端 (a.a. 185-268) 具有一個可能的 RNA 結合區 (RNA recognition motif, RRM),可和HCV IRES 結合。過去的研究顯示 p116-RRM 與IRES domain Ⅲ (nt 134-314) 之間有交互作用;但亦有研究指出 p116 會與 domain Ⅱ (nt 44-118) 結合。根據本實驗室先前的研究結果,顯示 domain Ⅱ 的頂端 (nt 65-102) 與domain Ⅲ 中的 abcd subdomains (nt 131-278) 對於 p116-RRM 有相類似的結合能力。因此,p116 在 HCV IRES上的實際結合區域仍有待確認。本研究主要著重在探討 p116-RRM 與 HCV 5' 端 RNA 的結合情形︰藉著將 C型肝炎病毒 5' 端非轉譯區及 core protein coding region 前段序列分割成較小片段,分別與純化的 p116-RRM 進行 filter binding、gel mobility shift、以及UV-crosslinking 等結合測試,試圖找出 p116 在 IRES 上最小的結合區域。結果發現,包含 domain Ⅲab 的 NCR123-232 RNA 即足以與p116-RRM 有很強之結合能力,顯示 p116 與 IRES 的接合位置應位在此區域內。此外,在核心蛋白質轉譯區也偵測到與 p116-RRM 結合的能力。在活體外轉譯實驗中加入涵蓋不同 domain 之 IRES 片段,會對 HCV IRES 所引導之核心蛋白質的合成造成程度不等的抑制效果。對於與 p116-RRM 有較強結合的 RNA 片段,對 IRES 引導的活體外轉譯也具有較強的抑制能力,顯示 C 型肝炎病毒 IRES 與 eIF3 次單元 p116 的結合對於此病毒的轉譯起始是重要的。 | zh_TW |
| dc.description.abstract | Hepatitis C virus (HCV), the major infectious agent of non-A, non-B hepatitis, often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV is a positive, single-stranded RNA virus with genomic size of approximately 9.6 kb. The viral genome consists of a 5’ noncoding region (NCR), a large open reading frame encoding a polyprotein of approximately 3010 amino acids, and a 3’ NCR. Sequences in the 5’ NCR are highly conserved among HCV isolates. Translation initiation of HCV is mediated by an internal ribosome entry site (IRES) element which encompasses almost the entire 5' NCR and about 30 nt of the core protein coding region immediately downstream the AUG codon. In addition, the IRES folds into a stable secondary and tertiary structure and has been demonstrated to functionally replaces several initiation factors by directly recruiting the 40S ribosomal subunit, eukaryotic initiation factor 3 (eIF3), and other cellular factors. Nevertheless, the mechanism of HCV internal initiation is poorly understood.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit complex that plays a central role in the initiation of translation. eIF3 has an aggregate molecular mass of ~800 kDa and comprises at least 13 subunits. Four subunits of eIF3 complex, p170, p116, p66 and p47 have been demonstrated to specifically bind to the HCV IRES. According to secondary structure prediction, p116 contains a putative RNA recognition motif (RRM) near the N terminal region (a.a. 185-268). Independent studies have demonstrated interactions between p116-RRM and the domain Ⅲ (nt134/314) of HCV IRES, and between the p116 subdomain from amino acid 227 to 320 and the IRES domain Ⅱ (nt 44-118 apical part). In our laboratory, p116-RRM was previously found to interact with both the HCV IRES domain Ⅱ (nt 65-102) and the domain Ⅲabcd (nt 131-278). In this study, the interaction between HCV IRES and the p116 subunit of eIF3 was further examined. His•RRM fusion protein was purified and used to examine its RNA binding ability by filter binding assay, gel shift assay, and UV-crosslinking experiments. The results indicate that IRES domain Ⅲab (nt 123-232) has a stronger RRM-binding activity then the domain Ⅲabcd (nt 131-278) does. Interesting, HCV413-581 that represents a part of the core protein sequence was also found to interact with p116-RRM. By performing in vitro translation competition assay, RNA subdomains important for the HCV-IRES-mediated translation of core protein were examined. RNA subdomains that had stronger ability to interact with p116-RRM shown stronger effect on translation-inhibition when used as a RNA competitor. So the interaction between HCV IRES and p116-RRM has essential effect on the IRES-mediated translation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:37:56Z (GMT). No. of bitstreams: 1 ntu-95-R93445108-1.pdf: 2431799 bytes, checksum: c6d6f78bd77a76acfdc1ceee3cdc33d9 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要.…………………………………….....………………… Ⅰ
英文摘要………………………………………………………… Ⅲ 縮寫表…………………………………………………………… Ⅴ 緒論…………………………………………………………… 1 研究方向………………………………………………………… 19 實驗材料與方法………………………………………………… 20 實驗結果………………………………………………………… 36 討論……………………………………………………………… 45 圖表……………………………………………………………… 54 附表與附圖……………………………………………………… 73 參考文獻………………………………………………………… 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 真核細胞轉譯起始因子 | zh_TW |
| dc.subject | C 型肝炎病毒 | zh_TW |
| dc.subject | 內部核醣體進入位置 | zh_TW |
| dc.subject | eIF3 | en |
| dc.subject | IRES | en |
| dc.subject | HCV | en |
| dc.title | C型肝炎病毒內部核醣體進入位置與真核細胞轉譯起始因子Ⅲ次單元p116交互作用之分析 | zh_TW |
| dc.title | Analysis of the interaaction between HCV IRES and the p116 subunit of eIF3 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳美如,董馨蓮,王萬波 | |
| dc.subject.keyword | C 型肝炎病毒,內部核醣體進入位置,真核細胞轉譯起始因子, | zh_TW |
| dc.subject.keyword | HCV,IRES,eIF3, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
