請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32174完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金 | |
| dc.contributor.author | Jui-Yi Hsieh | en |
| dc.contributor.author | 謝瑞頤 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:35:08Z | - |
| dc.date.available | 2008-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Bean BP, Cohen CJ and Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81(5):613-642.
Bean BP (1984) Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A 81(20):6388-6392. Campos F, Cornonas F, and Beirao Paulo (2004) Voltage-dependent displacement of the scorpion toxin Ts3 from sodium channels and its implication of the control of inactivation. British J of Pharmacol 142: 1115-1122 Chiamvimonvat N, Perez-Garcia MT, Ranjan R, Marban E and Tomaselli GF (1996) Depth asymmetries of the pore-lining segments of the Na+ channel revealed by cysteine mutagenesis. Neuron 16(5):1037-1047. Chiamvimonvat N, Perez-Garcia MT, Tomaselli GF and Marban E (1996) Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels. J Physiol 491 ( Pt 1):51-59. De Leon L and Ragsdale DS (2003) State-dependent access to the batrachotoxin receptor on the sodium channel. Neuroreport 14(10):1353-1356. Favre I, Moczydlowski E and Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71(6):3110-3125. Frazier DT, Narahashi T and Yamada M (1970) The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J Pharmacol Exp Ther 171(1):45-51. Heinemann SH, Terlau H, Stuhmer W, Imoto K and Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356(6368):441-443. Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69(4):497-515. Holmgren M, Jurman ME and Yellen G (1996) N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol 108(3):195-206. Holmgren M, Liu Y, Xu Y and Yellen G (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35(7):797-804. Hondeghem LM and Katzung BG (1977) Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472(3-4):373-398. Kuhn FJ and Greeff NG (2002) Mutation D384N alters recovery of the immobilized gating charge in rat brain IIA sodium channels. J Membr Biol 185(2):145-155. Kuo CC (1998) A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 54(4):712-721. Kuo CC and Bean BP (1994) Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 46(4):716-725. Kuo CC and Lu L (1997) Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br J Pharmacol 121(6):1231-1238. Kuo CC, Huang RC and Lou BS (2000) Inhibition of Na(+) current by diphenhydramine and other diphenyl compounds: molecular determinants of selective binding to the inactivated channels. Mol Pharmacol 57(1):135-143. Kuo CC and Liao SY (2000) Facilitation of recovery from inactivation by external Na+ and location of the activation gate in neuronal Na+ channels. J Neurosci 20(15):5639-5646. Kuo CC, Lin TJ and Hsieh CP (2002) Effect of Na(+) flow on Cd(2+) block of tetrodotoxin-resistant Na(+) channels. J Gen Physiol 120(2):159-172. Kuo CC, Chen WY and Yang YC (2004) Block of tetrodotoxin-resistant Na+ channel pore by multivalent cations: gating modification and Na+ flow dependence. J Gen Physiol 124(1):27-42. Li HL, Galue A, Meadows L and Ragsdale DS (1999) A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel. Mol Pharmacol 55(1):134-141. Li HL, Hadid D and Ragsdale DS (2002) The batrachotoxin receptor on the voltage-gated sodium channel is guarded by the channel activation gate. Mol Pharmacol 61(4):905-912. Li RA, Velez P, Chiamvimonvat N, Tomaselli GF and Marban E (2000) Charged residues between the selectivity filter and S6 segments contribute to the permeation phenotype of the sodium channel. J Gen Physiol 115(1):81-92. Linford NJ, Cantrell AR, Qu Y, Scheuer T and Catterall WA (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci U S A 95(23):13947-13952. Liu G, Yarov-Yarovoy V, Nobbs M, Clare JJ, Scheuer T and Catterall WA (2003) Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology 44(3):413-422. Liu Y, Holmgren M, Jurman ME and Yellen G (1997) Gated access to the pore of a voltage-dependent K+ channel. Neuron 19(1):175-184. McPhee JC, Ragsdale DS, Scheuer T and Catterall WA (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A 91(25):12346-12350. McPhee JC, Ragsdale DS, Scheuer T and Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem 270(20):12025-12034. Nau C and Wang GK (2004) Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 201(1):1-8. Perez-Garcia MT, Chiamvimonvat N, Marban E and Tomaselli GF (1996) Structure of the sodium channel pore revealed by serial cysteine mutagenesis. Proc Natl Acad Sci U S A 93(1):300-304. Ragsdale DS, McPhee JC, Scheuer T and Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265(5179):1724-1728. Ragsdale DS, McPhee JC, Scheuer T and Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93(17):9270-9275. Stauffer DA and Karlin A (1994) Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33(22):6840-6849. Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62(1):37-57. Sunami A, Dudley SC, Jr. and Fozzard HA (1997) Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc Natl Acad Sci U S A 94(25):14126-14131. Sunami A, Tracey A, Glaaser IW, Lipkind GM, Hanck DA and Fozzard HA (2004) Accessibility of mid-segment domain IV S6 residues of the voltage-gated Na+ channel to methanethiosulfonate reagents. J Physiol 561(Pt 2):403-413. Tomaselli GF, Chiamvimonvat N, Nuss HB, Balser JR, Perez-Garcia MT, Xu RH, Orias DW, Backx PH and Marban E (1995) A mutation in the pore of the sodium channel alters gating. Biophys J 68(5):1814-1827. Townsend C, Hartmann HA and Horn R (1997) Anomalous effect of permeant ion concentration on peak open probability of cardiac Na+ channels. J Gen Physiol 110(1):11-21. Townsend C and Horn R (1999) Interaction between the pore and a fast gate of the cardiac sodium channel. J Gen Physiol 113(2):321-332. Tsang SY, Tsushima RG, Tomaselli GF, Li RA and Backx PH (2005) A multifunctional aromatic residue in the external pore vestibule of Na+ channels contributes to the local anesthetic receptor. Mol Pharmacol 67(2):424-434. Tsushima RG, Li RA and Backx PH (1997) Altered ionic selectivity of the sodium channel revealed by cysteine mutations within the pore. J Gen Physiol 109(4):463-475. Tsushima RG, Li RA and Backx PH (1997) P-loop flexibility in Na+ channel pores revealed by single- and double-cysteine replacements. J Gen Physiol 110(1):59-72. Vassilev PM, Scheuer T and Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241(4873):1658-1661. Vedantham V and Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78(6):2943-2958. Wang SY and Wang GK (1999) Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys J 76(6):3141-3149. Wang SY, Nau C and Wang GK (2000) Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities. Biophys J 79(3):1379-1387. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL and Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89(22):10910-10914. Yang N, George AL, Jr. and Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16(1):113-122. Yang N and Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15(1):213-218. Yang Y, Yan Y and Sigworth FJ (2004) Can Shaker potassium channels be locked in the deactivated state? J Gen Physiol 124(2):163-171. Yang YC and Kuo CC (2005) An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+. J Gen Physiol 125(5):465-481. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32174 | - |
| dc.description.abstract | 抗癲癇藥物及局部麻醉劑對於鈉離子通道有使用依賴性的抑制效果,一般相信這些藥物有一個共同的受體結合位置。部分的學者認為,此受體位於細胞內側,為鈉離子通道內口的一部分;另一些學者則認為受體是位於細胞外側。過去的研究發現,當第四次單元 (DIV) 之第五、六穿膜區連接段 (S5-S6 linker, P-loop) 的 W1716,以及 DIV S6 中段的 F1764 發生突變時,皆可顯著影響抗癲癇藥物或局部麻醉劑藥物的親和力。傳統上認為 W1716 是構成鈉離子通道外口的一部分,F1764 則是位於鈉離子通道的內面。我們從這樣的觀點出發,針對此二位置及其前後位置做各種不同的突變,以了解為何在鈉離子通道內側的 F1764 及外側的 W1716 皆可影響藥物親和力。實驗中,使用典型的抗癲癇藥物 (carbamazepine, CBZ)、典型的局部麻醉劑 (lidocaine) 以及結構上類似但不屬於此兩類藥物的 diclofenac (一種非固醇類抗發炎藥物)。對於同一突變來說,親和力變化程度有 lidocaine > CBZ > diclofenac 的關係。而對於同一氨基酸,突變成氨基酸 A 或 C 的效果要大於突變成 E 或 R 的效果。若從能量的觀點來看,W1716C / F1764A 雙突變的效果相較於兩單點突變並沒有加成性,而 W1716E / F1764R 則可能有超加成性。我們同時也測試 W1716C、F1764C 及 W1716C/F1764C 對於 Cd2+ 的敏感性,結果發現敏感度在 -30 mV 有下列關係 W1716C > F1764C > WT (野生型) ~ W1716C / F1764C,即 W1716C 與 F1764C 之敏感度在雙突變有相互抵消的效果。另一方面,從胞外給予 MTSET (2-(trimethylammonium)ethyl) methanethiosulfonate bromide,可於氨基酸 C 的側支上做共價鍵的修飾) 的結果發現,WT 及 F1764C 皆無法被有效修飾,W1716C 則在速率及程度上都有明顯的狀態依賴修飾效果。若 W1716C 配合 F1764C 形成 W1716C / F1764C 雙突變,W1716C 被修飾的程度會大幅降低,且於不活化態時要比處於休息態時減弱幅度更大。儘管 F1764C 無法被胞外MTSET 修飾,卻可被胞外MTSEA (2-aminoethyl methanethiosufonate, hydrobromide) 修飾,且修飾後並不影響電流的峰值,反而是減小殘餘的電流 (sustain current),並將不活化曲線負向移動,扮演一開闔修飾者的角色。此外,當利用氨基酸 arginine – glutamate 形成的離子鍵來強化 W1716 及 F1764 間交互作用時,我們發現 W1716E 及 F1764R各別影響離子通道性質的情況甚小。但當兩者搭配,即在 W1716E / F1764R 雙突變離子通道中,我們發現不活化曲線斜率變得很緩且反轉膜電位大幅負向移動至 0 mV 附近。此一結果顯示 W1716 及 F1764的位置關係相當靠近,且兩者間互動關係相當精細,若改變此關係則離子通道的性質會隨之嚴重改變。從藥理上來說,W1716 及 F1764 交互作用的模式,造成了藥物的抑制效果的狀態依賴性。其次,從功能性數據的暗示,傳統上認為 W1716 在鈉離子通道外口、而 F1764 在內口的想法應有所修改;最後,從生理的角度來看,W1716 所處的鈉離子通道外口,可能並不是單純地負責離子的通透與選擇,而很可能是連結通道開闔機制及離子通透機制的重要樞紐。 | zh_TW |
| dc.description.abstract | Anticonvulsants and local anesthetic drugs block voltage gated sodium channels in a similar use-dependent manner, and are found to bind to a common receptor in the channels. Some researchers believe that this common receptor is located at the internal pore of sodium channels, whereas others believe that the receptor is located at the external pore of sodium channels. Both W1716 at DIV P-loop and F1764 at mid DIV S6 segment have been implicated as the putative receptor site for anticonvulsants and local anesthetics. However, according to the traditional view of sodium channel structure, W1716 is located at the external pore mouth and F1764 is located in the internal pore. In this present study, we tried to explore why and how external and internal pore could affect drug binding affinities simultaneously. To reach this goal, we tested the affinity of carbamazepine (a typical anticonvulsant, CBZ), lidocaine (a typical local anesthetic), or diclofenac (a non-steroid anti-inflammatary drug structurally similar to carbamazepine) to different mutant channels. The affinity changes showed the following pattern for all mutants: lidocaine > CBZ > diclofenac. The attenuation of drug affinity is more significant in mutating W1716 or F1764 to A or C than to E or R. While W1716C/F1764A showed no additive effect on drug binding as compared to corresponding single mutants, W1716E/F1764R showed supra-additive effects. We also characterized the sensitivity of different mutant channels to cadmium ion, and demonstrating an interesting order: W1716C > F1764C > WT ~ W1716C/F1764C. This order strongly implied that the sensitivity of W1716C and that of F1764C were cancelled mutually in double mutant channel W1716C/F1764C. Moreover, while W1716C showed its sensitivity to external MTSET in a state dependent manner, WT and F1764C had no significant modification by external MTSET. Interestingly, as in the case of cadmium sensitivity, we found that F1764C attenuated the sensitivity of W1716C to external MTSET, especially at the inactivated channel. That is to say, W1716C/F1764C mutant channel thus was less rather than more modified than W1716C mutant channel. Although F1764C can not be modified by external MTSET, it can be modified by external MTSEA. Modification of W1716C by MTSET attenuated peak current. In contrast, MTSEA blocked sustain current of F1764C and shifted its inactivation curve negatively. On the other hand, we use RE mutant to strengthen the interaction between W1716 and F1764. Both single mutant channels (W1716E and F1764R) showed little effects on channel gating or ion selectivity. However, W1716E/F1764R double mutation caused changes in the slope factor of the steady state inactivation curve and significant shift of reversal potential. These results supported that W1716 and F1764 may be located in a common region which allows state dependent interaction between these two residues. The traditional view of sodium channel pore structure thus may have to be modified to incorporate our data. From the pharmacological point of view, this state-dependent interaction may constitute the molecular basis of use-dependent drugs, such as anticonvulsants or local anesthetics. W1716 and the external pore mouth may not only be involved in ion selectivity but also serve as a key linkage between the gating machinery and the ion permeation pathway in sodium channels. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:35:08Z (GMT). No. of bitstreams: 1 ntu-95-R93441001-1.pdf: 2363334 bytes, checksum: e6880179f6ea1220dc2904e89bd27888 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目次
圖次 …………………………………………………………………….. iii 表次 …………………………………………………………………….. iv 誌謝 …………………………………………………………………….. v 摘要 …………………………………………………………………….. vi Abstract .………………………………………………………...……… viii 緒論 …………………………………………………………………….. 1 材料與方法 …………………………………………………………… 8 結果 ……………………………………………………………………. 13 討論 ...………………………………………………………………….. 29 圖 ...…………………………………………………………………….. 42 表 ...…………………………………………………………………….. 60 參考文獻 ….…………………………………………………………….. 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈉離子通道 | zh_TW |
| dc.subject | 孔洞 | zh_TW |
| dc.subject | 局部麻醉劑 | zh_TW |
| dc.subject | 抗癲癇藥物 | zh_TW |
| dc.subject | local anesthetics | en |
| dc.subject | anticonvulsant | en |
| dc.subject | pore | en |
| dc.subject | sodium channel | en |
| dc.title | 鈉離子通道第四次單元孔洞迴路與第六穿膜區中段之交互關係 | zh_TW |
| dc.title | The Interaction between DIV Pore loop and DIV S6 in the Na+ Channel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡明正,劉天申,黃榮棋,湯志永 | |
| dc.subject.keyword | 鈉離子通道,抗癲癇藥物,局部麻醉劑,孔洞, | zh_TW |
| dc.subject.keyword | sodium channel,anticonvulsant,local anesthetics,pore, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
