請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方(Wen-Fang Wu) | |
| dc.contributor.author | Yung-Chang Chang | en |
| dc.contributor.author | 張詠昌 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:35:05Z | - |
| dc.date.available | 2016-08-12 | |
| dc.date.copyright | 2011-08-12 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-28 | |
| dc.identifier.citation | 1. J. S. Chou, W. T. Tu, “Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower,” Engineering Failure Analysis, Vol. 18, pp. 295-313, 2011.
2. J. G. Chern, J. H. Teng, I. J. Chen, H. F. Fang, “The MOS Development of Short-Range Wind Power Forecast,” Taiwan Wind Energy Association, G6-10, 2010. 3. T. J. Chang, Y. T. Wu, H. Y. Hsu, C. R. Chu, C. M. Liao, “Assessment of Wind Characteristics and Wind Turbine Characteristics in Taiwan,” Renewable Energy, Vol. 28, pp. 851-871, 2003. 4. A. D. Piazza, M. C. D. Piazza, A. Ragusa, G. Vitale, “Statistical Processing of Wind Speed Data for Energy Forecast and Planning,” International Conference on Renewable Energies and Power Quality, 2010. 5. W. T. Zhao, P. Z. Cao, J. F. Chen, “The Research of Load Calculation Method and Loads Combination about Wind Turbine Tower,” Special Structures, Vol. 27, Iss. 4, 2010. 6. I. Lavassas, G. Nikolaidis, P. Zervas, E. Efthimiou, I. N. Doudoumis, C. C. Baniotopoulos, “Analysis and Design of the Prototype of a Steel 1-MW Wind Turbine Tower,” Engineering Structures, Vol. 25, pp. 1097-1106, 2003. 7. P. E. Uys, J. Farkas, K. Jármai, F. van Tonder, “Optimisation of a Steel Tower for a Wind Turbine Structure,” Engineering Structures, Vol. 29, pp. 1337-1342, 2007. 8. K. R. Xie, J. T. Tseng, Y. Y. Chang, “Load Analysis of Tower for Wind Turbine,” Taiwan Wind Energy Association, G6-02, 2010. 9. N. Bazeos, G. D. Hatzigeorgiou, I. D. Hondros, H. Karamaneas, D. L. Karabalis, D. E. Beskos, “Static, Seismic and Stability Analyses of A Prototype Wind Turbine Steel Tower,” Engineering Structures, Vol. 24, pp. 1015-1025, 2002. 10. F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos, “Reliability of Wind Turbine Subassemblies,” IET Renew. Power Gener., Vol. 3, Iss. 4, pp. 1-15, 2009. 11. E. Echavarria, B. Hahn, G. J. W. van Bussel, T. Tomiyama, “Reliability of Wind Turbine Technology Through Time,” Journal of Solar Energy Engineering, Vol. 130, 2008. 12. C. E. Ebeling, “An Introduction to Reliability and Maintainability Engineering,” McGraw-Hill, 1997. 13. F. Xie, J. W. Zhao, W. L. Shen, B. C. Zhou, “Simulating Design of the Towers Structure for 600 KW-Wind Turbine,” Journal of System Simulation, Vol. 16, No. 1, 2004. 14. F. R. Vorpahl, M. Strobel, H. G. Busmann, S. Kleinhansl, “Superelement Approach in Full-coupled Offshore Wind Turbine Simulation: Influence of the Detailed Support Structure Modelling on Simulation Results for a 5-MW Turbine on a Tripod Substructure,” Journal of System Simulation, ISOPE, 2010. 15. 陳清嚴、張嘉文與江榮城,風力廠址規劃與環境影響評估,電機月刊第十六券第七期,民國95年。 16. DBAR大氣研究資料庫,http://stdank.as.ntu.edu.tw/。 17. H. O. Fuchs, R. I. Stephens, “Metal Fatigue in Engineering,” John-Wiley & Sons Inc., 1980. 18. J. Schijve, “Fatigue of Structures and Materials,” Springer Netherlands, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32173 | - |
| dc.description.abstract | 為提高能源密度來滿足用電需求,風力發電機有不斷朝大型化發展的趨勢,這不僅提高風力發電機之開發與維修成本,也影響其運轉壽命。本研究建構一風力發電機之塔架模型,透過風速與塔架負載關係式求得塔架負載情形後,利用有限元素分析軟體探討塔架結構受負載下之應力分佈情形,並比較各不同負載分量之影響程度。本論文特別針對澎湖地區風速歷史觀測資料進行統計分析,求得該地區之風速機率分佈函數,最後結合前述塔架負載分析結果以及風速機率分佈函數,對塔架結構進行疲勞分析,並導入量化可靠度概念,求得塔架之平均失效時間。研究結果發現,塔架之主要負載為風作用於葉片掃掠面上的氣動負載以及因風速分佈不均而產生的俯仰力矩,與其他風力機設計軟體負載結果比較後發現,利用風速與塔架負載關係式計算所得負載對塔架進行結構分析是保守、可行的估算方法。而澎湖地區風速分佈情形,包括逐時平均風速與逐時極大風速皆可以二參數韋伯機率分佈表示。最後,由疲勞分析結果可知,當塔架模型座落於澎湖地區風場中且承受反覆之風力負載時,其失效時間高於331,416週次的可能性高達99.8%,顯示此塔架結構座落澎湖地區風場中具有適當的疲勞耐久度,為一安全之設計。 | zh_TW |
| dc.description.abstract | To increase the energy density in order to meet the demand of electricity use, wind turbines have been developed toward large-scale designs. The gigantic size of wind turbine towers can generate more electricity, but it will also create higher cost of development and maintenance, and impact the operation life. The present research sets up a wind turbine tower model, and the loads of towers are calculated by its relation to wind speed. Finite element method is used to analyze the stress distribution of towers under the loads. Impacts from different loads are compared as well. The wind speed distribution is derived from data collected in Penghu, Taiwan using statistical method. Fatigue analysis of towers is then conducted with fatigue loads and wind speed distribution, and the mean time to failure (MTTF) of towers is calculated with quantitative reliability theory. The result shows that the main loads of towers are the wind force acting on the rotation area of wind turbine blades and the moment caused by non-uniformed wind speed. After comparing this research results with loads calculated by a wind turbine design software, it is concluded that it’s a feasible and conservative method to analyze wind turbine tower structure with the loads calculated by its relation to wind speed. In addition, it is shown that the average and maximum hourly wind speed in Penghu can both be fitted into Weibull distribution. In conclusion, the fatigue analysis shows that the probability is greater than 99.8% for the tower model’s failure time to be above 331,416 cycles, and it shows that the tower model in this research possesses appropriate fatigue durability and is considered a safe tower design for Penghu. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:35:05Z (GMT). No. of bitstreams: 1 ntu-100-R98522642-1.pdf: 2589052 bytes, checksum: 1b8375318511d987082153429ba10f42 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 3 第二章 可靠度基礎理論 7 2.1 可靠度與機率函數 7 2.1.1 常態機率分佈 8 2.1.2 對數常態機率分佈 9 2.1.3 韋伯機率分佈 10 2.1.4 指數機率分佈 11 2.2 機率圖法 11 2.2.1 常態機率圖 12 2.2.2 對數常態機率圖 12 2.2.3 韋伯機率圖 13 2.2.4 指數機率圖 13 2.3 適配度檢定法 13 第三章 塔架負載分析 17 3.1 塔架幾何結構與材料性質 17 3.2 靜態負載之有限元素法設定 17 3.3 塔架靜態負載分析 18 3.3.1 負載計算 19 3.3.2 塔架受靜態負載之應力分析 19 3.3.3 各別負載分量之影響 20 3.3.4 小結 20 第四章 風速機率分佈模型 30 4.1 風工程常用機率函數 30 4.1.1 型I極限分佈 30 4.1.2 型II極限分佈 31 4.1.3 韋伯分佈 31 4.1.4 萊利分佈 32 4.2 風速之垂直分佈 32 4.3 風速資料蒐集 32 4.3.1 DBAR大氣研究資料庫簡介 33 4.3.2 風速資料定義 33 4.4 風速值之適配分佈 33 4.4.1 逐時平均風速 33 4.4.2 逐時極大風速 34 4.4.3 小結 34 第五章 塔架疲勞分析 37 5.1 疲勞特性與相關理論簡介 37 5.1.1 疲勞破壞機制 37 5.1.2 等振幅疲勞試驗 38 5.1.3 S-N曲線 39 5.2 疲勞負載之有限元素法設定 39 5.3 塔架疲勞負載分析 40 5.3.1 疲勞負載隨機抽樣及修正 40 5.3.2 疲勞壽命及平均失效時間 41 5.3.3 小結 42 第六章 結論 52 參考文獻 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可靠度 | zh_TW |
| dc.subject | 疲勞壽命 | zh_TW |
| dc.subject | 塔架 | zh_TW |
| dc.subject | 平均失效時間 | zh_TW |
| dc.subject | 風力發電機 | zh_TW |
| dc.subject | Reliability | en |
| dc.subject | MTTF | en |
| dc.subject | Fatigue life | en |
| dc.subject | Tower | en |
| dc.subject | Wind turbine | en |
| dc.title | 風力發電機塔架之可靠度分析 | zh_TW |
| dc.title | Reliability Analysis of Wind Turbine Towers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李志中(Jyh-Jone Lee),游章雄(Jang-Shyong You) | |
| dc.subject.keyword | 風力發電機,塔架,可靠度,疲勞壽命,平均失效時間, | zh_TW |
| dc.subject.keyword | Wind turbine,Tower,Reliability,Fatigue life,MTTF, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
