Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳羿貞
dc.contributor.authorChien-Shun Chenen
dc.contributor.author陳建舜zh_TW
dc.date.accessioned2021-06-13T03:34:36Z-
dc.date.available2008-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation1. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic
tension or compression to cells in vitro. J. Cell Sci. 75: 35-42, 1985
2. Banes AJ, Link GW, Gilbert J, Taylor D, Monbureau O. Culturing cells in a
mechanically active environment. Am Biotechnol Lab. 8: 12-22, 1990
3. Basdra EK, Komposch G. Osteoblast-like properties of human periodontal
ligament cells: an in vitro analysis. European J. Orthod. 19: 615-621, 1997
4. Basdra EK, Papavassiliou AG, Huber LA. Rab and Rho GTPase are involved in specific response of periodontal ligament fibroblasts to mechanical
stretching. Biochim Biophys Acta. 31: 209-213, 1995
5. Basso N, Heersche JNM. Characteristics of in vitro osteoblastic cell loading
models. Bone. 30(2): 347-351, 2002
6. Becker J, Schuppan D, Rabanus JP, Rauch R, Niechoy U, Gelderblom HR. Immunoelectron microscopic localization of collagen type I, V, VI and of procollagen III in human periodontal ligament and cementum. J. Histochem
Cytochem. 39: 103-110, 1991
7. Beersten W, van den Bos T. Calcification of dentinal collagen by cultured
rabbit periosteum: the role of alkaline phosphatase. Matrix. 8: 159-171,
1989
8. Bellows CG, Aubin JE, Heersche JN. Initiation and progression of
mineralization of bone nodules formed in vitro: the role of alkaline
phosphatase and organic phosphate. Bone Miner. 14(1): 27-40, 1991
9. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H. Expression of mRNAs encoding for α and β integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and
gingival fibroblasts. J. Dent Res. 79(9): 1712-1716, 2000
10. Bonewald LF, Harris SE, Rosser J, Dallas SL, Dallas MR, Camacho NP, Boyan B, Boskey A. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro responses bone formation. Calcif Tissue
Int. 72: 537-547, 2003
11. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Jarsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin.
Bone. 23(3):187-196, 1998
12. Brown TD. Techniques for mechanical stimulation of cells in vitro: a
review. J.Biomechanics. 33: 3-14, 2000
13. Bumann A, Carvalho RS, Schwarzer CL, Yen EHK. Collagen synthesis from human PDL cells following orthodontic tooth movement. European J.
Orthodontics. 19: 29-37, 1997
14. Carnes DL, Maeder CL, Graves DT. Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament. J. Periodontol.
68:701-707, 1997
15. Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone.
34: 402-411, 2004
16. Chiba M, Mitani Hideo. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells
induced by mechanical stress. Cell Biochem Funct. 22: 249-256, 2004
17. Cho M, Mastuda N, Lin WL, Moshier A, Ramakrishnan PR. In vitro formation of mineralized nodules by periodontal ligament cells from rat.
Calcif Tissue Int. 50: 459-467, 1992
18. Cho M, Garant PR. Development and general structure of the periodontum.
Periodontology 2000. 24: 9-27, 2000
19. de Bernard B. Glycoproteins in the local mechanism of calcification. Clin
Orthop Rel Res. 162: 233-244, 1982
20. Dolce C, Kinniburgh AJ, Dziak R. Immediate early gene induction in rat osteoblastic cells after mechanical deformation. Archs. Oral Biol. 41:
1101-1108, 1996
21. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A
transcriptional activator of osteoblast differentiation. Cell. 89: 747-754,
1997
22. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J.
Cell Biochem. 88: 446-454, 2003
23. Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblast cell line
MC3T3-E1. British J. Nutrition. 86: 145-149, 2001
24. Geest JPV, Martino ESD, Vorp DA. An analysis of the complete strain field
within FlexercellTM membranes. J. Biomech. 37: 1923-1928, 2004
25. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry. 329: 77-84,
2004
26. Griffiths GS, Moulson AM, Petrie A, James IT. Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crecicular fluid during different stages of orthodontic treatment. J.
Clin Periodontol. 25(6): 492-498, 1998
27. Hale LV, Ma YF, Santerre. Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Calcif Tissue
Int. 67: 80-84, 2000
28. Hitomi K, Torii Y, Tsukagoshi N. Increase in the activity of alkaline phosphate by L-ascorbic acid 2-phosphate in a human osteoblast cell line,
HuO-3N1. J Nutr Sci Vitaminol. 38(6): 535-544, 1992
29. Hou LT, Yaeger JA. Cloning and characterization of human gingival and
periodontal ligament fibroblasts. J. Periodontol. 64: 1209-1218, 1993
30.Howard PS, Kucich U, Taliwal R, Korostoff JM. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J.
Periodont Res. 33: 500-508, 1998
31. Hsieh AH, Tsai CMH, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KLP. Time dependent increase in type-III collagen gene expression in medial collateral ligament fibroblasts under cyclic strains. J. Orthoped Res.
18: 220-227, 2000
32. Ignatius A, Blessing H, Lieder A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Firemert B, Claes L. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials. 26:
311-318, 2005
33. Ishikawa S, Iwasaki K, Komaki M, Ishikawa Isao. Role of ascorbic acid in
periodontal ligament cell differentiation. J. Periodontol. 75: 709-716, 2004
34. Ivanovski S, Li H, Hasse HR, Bartold PM. Expression of bone associate macromolecules by gingival and periodontal ligament fibroblasts. J.
Periodont Res. 36:131-141, 2001
35. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J. Biol Chem.
268: 9049-9054, 1993
36. Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclic tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J. Dent Res. 85(5): 457-462,
2006
37. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce Osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J.
Bone Miner Res. 17: 210-220, 2002
38. Kamalia N, McCulloch CAG, Tenebaum HC, Limeback H. Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow
stromal cell cultures. Blood. 79(2): 320-326, 1992
39. Kasperk C, Schneider U, Sommer U, Niethard F, Ziegler R. Differential effects of glucocorticoids on human osteoblastic cell metabolism in vitro.
Calcif Tissue Int. 57(2): 120-126, 1995
40. Kasugai S, Shibata S, Suzuki S, Susami T, Ogura H. Characterization of a system of mineralized-tissue formation by rat dental pulp cells in culture.
Arch Oral Biol. 38(9): 769-777, 1993
41. Kawarizadeh A, Bourauel C, Gotz W, Jager A. Early response of periodontal ligament cells to mechanical stimulus in vivo. J. Dent Res.
84(10): 902-906, 2005
42. Kawase T, Sato S, Miake K, Saito S. Alkaline phosphatase of human
periodontal ligament fibroblast-like cells. Adv Dent Res. 2(2): 234-239, 1988
43. Kikuiri T, Hasegawa T, Yoshimura Y, Shirakawa T, Oguchi H. Cyclic tension force activates nitric oxide production in cultured human
periodontal ligament cells. J. Periodontol. 71: 533-539, 2000
44. Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, Ducy P, Geiser AG. Parathyroid hormone bone anabolic action requires
Cbfa1/Runx2-dependent signaling. Mol Endocrinol. 17(3): 423-435, 2003
45. Koiek M, Shimokawa H, Kanno Z, Ohya K, Soma K. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line
ST2. J. Bone Miner Metab. 23: 219-255, 2005
46. Komori T. Runx2, a multifunctional transcription factor in skeletal
development. J. Cell Biochem. 87: 1-8, 2002
47. Kondo Y, Irie K, Ikegame M, Ejiri S, Hanada K, Ozawa H. Role of strmal cells in osteoclast differentiation in bone marrow. J. Bone Miner Metab.
19(6): 352-358, 2001
48. Lallier TE, Spencer A, Fowler MM. Transcript profiling of periodontal
fibroblasts and osteoblast. J. Periodontol. 76: 1044-1055, 2005
49. Lazcano O, Li CY, Pierre RV, O’Duffy JD, Beissner RS, Abell-Aleff PC. Clinical utility of the alizarin red S stain on permanent preparations to detect calcium-containing compounds in synovial fluid. Am J. Clin Pathol.
99(1): 90-96, 1993
50. Lekic P, McCulloch CAG. Periodontal ligament cell populations: the central role of fibroblasts in creating a unique tissue. The Anatomical record. 245:
327-341, 1996
51. Lekic P, Sodek J, McCulloch CAG. Relationship of cellular proliferation to expression of osteopontin and bone sialoprotein in regenerating rat
periodontium. Cell Tissue Res. 285: 491-500, 1996
52. Leonard EP. Enzyme histochemistry of periodontal pathogenesis in the rice
rat. Cell Molec Biol. 24:241-248, 1979
53. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ. Regulatory controls for osteoblast growth and differentiation: role of
Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 14: 1-41, 2004
54. Long p, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1β-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro.
J. Dent Res, 80(5): 1416-1420, 2001
55. Long P, Liu F, Piesco N, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in
human periondontal ligamental cells in vitro. Bone. 30(4): 547-552, 2002
56. Longui CA, Santos MC, Formiga CB, Oliveria DVA, Rocha MN, Faria CDC, Kochi C, Monte O. Antiproliferative and apoptotic potencies of glucocorticoids: nonconcordance with their anti-inflammatory and
immunosuppressive properties. Arq Bras Endocrinol Metab. 49(3): 378-383
2005
57. Mariotti A. The extracellular matrix of the periodontium: dynamic and
interactive tissue. Periodontology 2000. 3: 39-93, 1993.
58. Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of humanperiodontal ligament cells in vitro. Arch Oral Biology. 43:
987-997, 1998
59. McCulloch CAG, Bordin S. Role of fibroblast subpopulations in periodontal physiology and pathology. J. Periodontal Res. 26: 144-154,
1991
60. McCulloch CAG, Lekic P, McDKee MD. Role of physical forces in regulating the form anf function of the periodontal ligament.
Periodontology 2000. 24: 56-72, 2004
61. Mehrotra M, Saegusa M, Voznesensky O, Pilbeam C. Role of Cbfa1/Runx2 in the fluid shear stress induction of COX-2 in osteoblasts. Biochem
Biophy Res Communications. 341: 1225-1230, 2006
62. Michelini LC, Krieger EM. Aortic caliber changes during development of
hypertension in freely moving rats. Am J. Physiol. 250: H662-H671, 1986.
63. Mullender M, EI Haj AJ, Yang Y, Van Duin MA, Burger EH, Klein-Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone
tissue. Med Biol Eng Comput 42: 14-21, 2004
64. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG. Mutations involving the transcription factor CBFA1
cause cleidocranial dysplasia. Cell. 89: 773-779, 1997
65. Nohutcu RM, McCauley LK, Koh AJ, Somerman MJ. Expression of extracellular matrix protein in human periodontal ligament cells during
mineralization in vitro. J Periodontol. 68: 320-327, 1997
66. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y. Effect of cellular aging on the induction of cycloxygenase-2 by mechanical stress in human
periodontal ligament cells. Mech Ageing Dev. 108(2): 151-163, 1999
67. Pavlin D, Jelica GH. Effect of mechanical loading on periodontal cells. Crit
Rev Oral Biol Med. 12(5):414-424, 2001
68. Peter SJ, Liang CR, Kim DJ, Widmer MS, Mikos AG. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerophosphate, and L-ascorbic acid. J. Cell Biochem.
71: 55-62, 1998
69. Price P. Osteocalcin. Bone and Mineral Research. 1: 157-190, 1983
70. Prince CW. Secondary structure predictions for rat osteopontin, Connect
Tissue Res. 21: 15-20, 1989
71. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A. The effect of centrifugal force on mRNA levels of collagenase, collagen type-1, tissue inhibitors of metalloproteinases and β-actin in cultured human periodontal ligament fibroblasts. J. Periodont
Res. 39: 27-32, 2004
72. Rothamel D, Schwarz F, Sculean A, Herten M, Scheraum W, Becker J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Impl Res. 15:443-449
, 2004
73. Sandy JR, Farndale RW, Meikle MC. Recent advances in understanding mechanically induced bone remodeling and their relevance to orthodontic
theory and practice. Am J. Orthodont Dentofac Orthop 103: 212-22, 1993
74. Saito M, Saito S, Ngan P, Shanfeld J, Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and vitro. Am J. Orthodont Dentofac Orthop 99:
226-240, 1991
75. Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with Runx2 to repress the osteocalcin promoter and regulate
osteoblast differentiation. J. Biol Chem. 279(40): 41998-42007, 2004
76. Shiga M, Kapila YL, Zhang Q, Hayami T, Kapila S. Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3-E1 osteoblast-like cell: potential association between collagenase expression and changes in alkaline phosphatase phenotype. J. Bone Miner Res. 18:
67-77, 2003
77. Shimizu N, Ozawa Y, Yamaguchi M, Goseki T, Ohzeki K, Yoshimitsu A. Induction of COX-2 expression by mechanical tension force in human
periodontal ligament clls. J. Periodontol. 69: 670-677, 1998
78. Somerman MJ, Archer SY, Imm GR, Foster RA. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J. Dent
Res. 67: 66-70, 1988
79 Stanford CM, Stevens JW, Brand RA. Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA. J.
Biomechanics. 28(12): 1419-1427, 1995
80. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H. Expression of MMP-8 and MMP-13 genes in the periodontal during tooth movement in rats. J Dent Res. 82(2): 646-651,
2003
81. Taria M, Nakao H, Takahashi J, Araki Y. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J. Oral Rehabilitation. 30:
697-701, 2003
82. Theilig C, Bernd A, Leyhausen G, Kaufmann R, Geurtsen W. Effects of mechanical force on primary human fibroblasts derived from the gingival
and the periodontal ligament. J. Dent Res. 80(8): 1777-1780, 2001
83. Vande Geest JP, Di Martino ES, Vorp DA. An analysis of the complete
strain field with FlexcellTM membranes J. Biomech. 37: 1923-1928, 2004
84. Van der Pauw MTM, Klein-Nulend J, van den Bos T, Burger EH, Everts V, Beertsen W. Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity. J.
Periodont Res. 35: 335-343, 2000
85. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Arch
Oral Biology. 47: 465-471, 2002
86. Yamaguchi M, Shimizu N. Identification of factors mediating the decrease of alkaline phosphatase activity caused by tension-force in periodontal
ligament cells. Gen Pharmacol. 25(6): 1229-1235, 1994
87. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y, Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Archs Oral Biol. 39:
877-884, 1994
88. Yamaguchi M, Shimizu N, Shibata Y, Abiko Y. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal
ligament cells. J. Dent Res. 75(3): 889-894, 1996
89. Yamaguchi M, Shimizu N, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Archs Orat Biol. 39(10):
877-884, 1994
90. Yamakawa K, Iwasaki H, Masuda I, Ohjimi Y, Honda I, Saeki K, Zhang J, Shono E, Naito M, Kikuchi M. The utility of alizarin red s staining in calcium pyrophosphate dehydrate crystal deposition disease. J. Rheumatol.
30(5): 1032-1035, 2003
91. Yashino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulatiors in cultured human gingival and
periodontal ligament fibroblasts. J. Periodont Res. 38: 405-410, 2003
92. Yuge L, Okubo A, Miyashita T, Kumagai T, Nikawa T, Takeda S, Kanno M, Urabe Y, Sugiyama M, Kataoka K. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem Biophy Res
Communications. 311: 32-38, 2003
93. Young AD, Phipps DE, Astroff AB. Large-scale double-staining of rat fetal skeletons using Alizarin Red S and alcian blue. Tetraology. 61(4): 273-276,
2000
94. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK. The bone specific transcriptional regulator Cbfa1 is a target of mechanical
signals in osteoblastic cells. J. Biol Chem. 277: 23934-23941, 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32163-
dc.description.abstract齒列矯正治療時,矯正力量所引起的牙周韌帶與牙周組織反應是促成牙齒移動的關鍵因素。牙周韌帶是厚度僅0.15-0.38公釐介於牙根與齒槽骨之間的特殊軟組織結構,它的主要功能是使牙齒固定在齒槽骨上維持正常的牙齒位置及牙周組織的結構形態,並且負責牙周組織的修復與再生。無論是咀嚼時的咬合力、傷害性咬合接觸力以及齒列矯正力量,在機械力量刺激所引起的牙周組織適應與重塑過程中,牙周韌帶細胞都扮演極關鍵角色。基礎細胞生物學的研究顯示牙周韌帶細胞具有造骨細胞表型特徵,許多研究也顯示機械力量刺激會影響牙周韌帶細胞的生長與分化,然而在細胞生長與檢測造骨細胞表型特徵上,不同研究的結果並不一致。本研究的目的在探討一般培養液與含有L-ascorbic acid 2-phosphate(0.05mM)、sodium β-glycerophosphate(10 mM)及dexamethasone(10 -7 M)的促進基質鈣化培養液下的牙周韌帶細胞,在不同培養時間(7天、14天、21天)、未受力與施予不同程度週期性張力刺激下(3%、10%;0.1Hz;24hours),其細
胞分化、造骨細胞表型分化指標基因與其他相關基因的基因表現。
本研究結果發現:(1)牙周韌帶細胞在促進基質鈣化培養液下會表現細胞外基質鈣化並強化其成骨指標蛋白的基因表現,且隨著培養時間而增強。(2) 3%的週期性張力刺激會提升在正常培養液細胞的ALP、OC、Cbfa-1表現,10%則是抑制作用;3%與10%的週期性張力均抑制在促進基質鈣化培養液細胞的ALP、OC、Cbfa-1表現。(3) 3%與10%週期性張力會提升COL-I、COX-2的基因表現;3%週期性張力會提升COL-III mRNA表現,10%則是下降。因此本實驗推論牙周韌帶細胞在不同程度的分化時期,對於相同程度的機械力刺激反應並不相同。此外,細胞外基質也會受機械力
量所調控。
zh_TW
dc.description.abstractA mechanical force applied to a tooth is transmitted to the root surrounding tissues of the periodontium and initiates remodeling activities that allow for movement of the tooth through alveolar bone. The periodontal ligament (PDL) , in normal thickness from 0.15mm to 0.38mm, is a unique structure situated between the hard tissues of the alveolar bone and cementum. The PDL contains a large number of highly specialized fibroblasts that are believed to involve the normal maintenance, repair and regeneration of the ligament, the cementum and alveolar bone. PDL fibroblasts have been shown to possess the phenotypes of osteoblasts and to undergo osteoblast differentiation in response to various stimuli. The research results in the responses of PDL cells to mechanical strain varied due to different experiment models, different strain patterns and different strain levels. We hypothesize that the differentiation stage of PDL cells determines the gene expression of osteogenic markers (alkaline phosphatase, osteocalcin), transcription factor for osteoblastic differentiation (Cbfa-1/Runx2), extracellular matrix proteins (COL-I, COL-III) and proinflammatory gene (COX-2) when PDL cells responding to mechanical strain in vitro. In this study, the human PDL cells were cultured in standard medium or mineralizing medium with osteogenic factors, such as L-ascorbic acid 2-phosphate (0.05mM), sodium β- glycerophosphate (10 mM) and dexamethasone (10 -7 M). We examined the influences of culture periods (7 , 14, 21 days), addition of osteogenic supplements and the effects of different magnitudes of cyclic tensional force (3% v.s. 10% elongation, 0.1Hz, 6 cycles/
min ) for 24 hours on the responses of PDL cells.
Our results demonstrated that the osteogenic supplements of mineralizing medium induced the extracellular matrix mineralization and enhanced the expression of osteoblastic phenotype in PDL cell culture, which increased in a time-dependent manner. The mRNA expression of ALP、OC、Cbfa-1 of PDL cells cultured with standard medium was up regulated by 3% cyclic tensional force, but down regulated by 10% cyclic tensional force. However, the mRNA expression of ALP、OC、Cbfa-1 in PDL cells cultured with mineralizing medium decreased by both levels of cyclic tensional force, and this regulation was dependent on the magnitude of the force. The mRNA expression of COL-1 and COX-2 was increased by both levels of mechanical stimulation. The mRNA expression of COL-III was up regulated by 3% cyclic tensional force,
but down regulated by 10% tensional force.
These results suggest that PDL cells when cultured with different culture medium receiving different mechanical loads, have the ability to induce a variety of biological responses including altering ECM protein synthesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:34:36Z (GMT). No. of bitstreams: 1
ntu-95-R92422020-1.pdf: 2941958 bytes, checksum: 623575a2516ea9f6cfe5546764050efe (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents◎目錄……………………………………………………………… I
◎表次目錄………………………………………………………… III
◎圖次目錄………………………………………………………… IV
◎中文摘要………………………………………………………… VII
◎英文摘要………………………………………………………… VIII
◎第一章 引言……………………………………………………… 1
◎第二章 實驗目的………………………………………………… 14
◎第三章 實驗材料與方法………………………………………… 15
◎第四章 結果……………………………………………………… 22
◎第五章 討論……………………………………………………… 33
◎第六章 結論……………………………………………………… 51
◎第七章 未來研究方向…………………………………………… 53
◎參考文獻…………………………………………………… 96
*表一、過去文獻關於牙周韌帶細胞培養接受機械力量刺激的研究……54
*表二、本實驗依不同礦化誘導程度與施力程度的實驗設計……………58
*表三、本實驗半定量-反轉錄-聚合酶鏈鎖反應所使用之引子序列、黏合溫度與延伸反應的循環回數…………………………………… 59
►圖一、細胞接受單、雙軸向機械張力形變示意圖………………………60
►圖二、Flexercell® strain unit (FX-3000 Tension System)示意圖…………60
►圖三、載柱(Loading post)設計示意圖……………………………………61
►圖四、本實驗設計流程圖與觀察項目……………………………………62
►圖五、以正常培養液培養之牙周韌帶細胞隨培養時間及不同張力刺激在
細胞形態上的變化………………………………………………63
►圖六、以促進細胞基質鈣化培養液培養之牙周韌帶細胞隨培養時間及不
同張力刺激在細胞形態上的變化………………………………64
►圖七、以二種培養液培養牙周韌帶細胞一週後,在不同施力程度下以掃
描式電子顯微鏡(SEM)對細胞形態的觀察………………………65
►圖八、細胞以促進細胞基質鈣化培養液培養後,鹼性磷酸酶的染色觀察
……………………………………………………………………66
►圖九、細胞以促進細胞基質鈣化培養液培養後,鹼性磷酸酶染色的光學
顯微鏡(OM)觀察…………………………………………………67
►圖十、細胞以正常培養液培養後,鹼性磷酸酶的染色觀察……………68
►圖十一、細胞以正常培養液培養後,鹼性磷酸酶染色的光學顯微鏡(OM)
觀察……………………………………………………………69
►圖十二、細胞以促進細胞基質鈣化培養液培養後,ARS的染色觀察
…………………………………………………………………70
►圖十三、細胞以促進細胞基質鈣化培養液培養後,細胞基質礦化小體
在光學顯微鏡下(OM)的觀察…………………………………71
►圖十四、細胞以正常培養液培養後,ARS的染色觀察與細胞基質礦化小
體在光學顯微鏡下(OM)的觀察………………………………72
►圖十五、牙周韌帶細胞礦化程度的半定量分析………………………73
►圖十六、牙周韌帶細胞在不同程度張力刺激下,礦化程度的半定量分析
…………………………………………………………………74
►圖十七、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其ALP mRNA的變化………………………………75
►圖十八、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與
10%週期性張力刺激24小時後,ALP mRNA的變化…………76
►圖十九、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,ALP mRNA的變化……………………………77
►圖二十、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其OC mRNA的變化……………………………………78
►圖二十一、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,OC mRNA的變化………79
►圖二十二、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,OC mRNA的變化…………………………80
►圖二十三、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其COL-I mRNA的變化…………………………81
►圖二十四、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%
與10%週期性張力刺激24小時後,COL-I mRNA的變化……
………………………………………………………………82
►圖二十五、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-I mRNA的變化……………………83
►圖二十六、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培
養時間後,其COL-III mRNA的變化………………………84
►圖二十七、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-III mRNA的變化………………………………………………………………85
►圖二十八、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-III mRNA變化………………………86
►圖二十九、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培
養時間後,其Cbfa-1 mRNA的變化…………………………87
►圖三十、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,Cbfa-1 mRNA的變化………88
►圖三十一、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,Cbfa-1 mRNA的變化……………………89
►圖三十二、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其COX-2 mRNA的變化…………………………90
►圖三十三、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COX-2 mRNA的變化…91
►圖三十四、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COX-2 mRNA的變化……………………92
►圖三十五、BioFlex® 彈性膜以有限元素分析法(FEA)觀察受力分佈情形
………………………………………………………………93
►圖三十六、BioFlex® 彈性膜內圈與外圈受力差異反應於鹼性磷酸酶的
染色結果……………………………………………………93
►圖三十七、不同株牙周韌帶細胞以促進細胞基質鈣化培養液培養,對ALP
與ARS的染色觀察…………………………………………94
►圖三十八、牙周韌帶細胞在未接受週期性張力刺激下,以促進細胞基質
鈣化培養液培養在不同基底培養盤上,ALP與ARS的染色觀
察……………………………………………………………95
dc.language.isozh-TW
dc.subject牙周韌帶細胞zh_TW
dc.subject週期性張力刺激zh_TW
dc.subject細胞分化zh_TW
dc.subjectyclic tensional forceen
dc.subjectPeriodontal ligament cellsen
dc.subjectcell differentiationcen
dc.title人類牙周韌帶細胞的分化、基因表現與對機械張力刺激反應之研究zh_TW
dc.titleEffects of Mechanical Tensional Force on Differentiation and Gene Expression of Human Periodontal Ligament Cellsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor鄭景暉
dc.contributor.oralexamcommittee簡華宏
dc.subject.keyword牙周韌帶細胞,細胞分化,週期性張力刺激,zh_TW
dc.subject.keywordPeriodontal ligament cells,cell differentiationc,yclic tensional force,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved