請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳羿貞 | |
| dc.contributor.author | Chien-Shun Chen | en |
| dc.contributor.author | 陳建舜 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:34:36Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | 1. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic
tension or compression to cells in vitro. J. Cell Sci. 75: 35-42, 1985 2. Banes AJ, Link GW, Gilbert J, Taylor D, Monbureau O. Culturing cells in a mechanically active environment. Am Biotechnol Lab. 8: 12-22, 1990 3. Basdra EK, Komposch G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. European J. Orthod. 19: 615-621, 1997 4. Basdra EK, Papavassiliou AG, Huber LA. Rab and Rho GTPase are involved in specific response of periodontal ligament fibroblasts to mechanical stretching. Biochim Biophys Acta. 31: 209-213, 1995 5. Basso N, Heersche JNM. Characteristics of in vitro osteoblastic cell loading models. Bone. 30(2): 347-351, 2002 6. Becker J, Schuppan D, Rabanus JP, Rauch R, Niechoy U, Gelderblom HR. Immunoelectron microscopic localization of collagen type I, V, VI and of procollagen III in human periodontal ligament and cementum. J. Histochem Cytochem. 39: 103-110, 1991 7. Beersten W, van den Bos T. Calcification of dentinal collagen by cultured rabbit periosteum: the role of alkaline phosphatase. Matrix. 8: 159-171, 1989 8. Bellows CG, Aubin JE, Heersche JN. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14(1): 27-40, 1991 9. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H. Expression of mRNAs encoding for α and β integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J. Dent Res. 79(9): 1712-1716, 2000 10. Bonewald LF, Harris SE, Rosser J, Dallas SL, Dallas MR, Camacho NP, Boyan B, Boskey A. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro responses bone formation. Calcif Tissue Int. 72: 537-547, 2003 11. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Jarsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 23(3):187-196, 1998 12. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J.Biomechanics. 33: 3-14, 2000 13. Bumann A, Carvalho RS, Schwarzer CL, Yen EHK. Collagen synthesis from human PDL cells following orthodontic tooth movement. European J. Orthodontics. 19: 29-37, 1997 14. Carnes DL, Maeder CL, Graves DT. Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament. J. Periodontol. 68:701-707, 1997 15. Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone. 34: 402-411, 2004 16. Chiba M, Mitani Hideo. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress. Cell Biochem Funct. 22: 249-256, 2004 17. Cho M, Mastuda N, Lin WL, Moshier A, Ramakrishnan PR. In vitro formation of mineralized nodules by periodontal ligament cells from rat. Calcif Tissue Int. 50: 459-467, 1992 18. Cho M, Garant PR. Development and general structure of the periodontum. Periodontology 2000. 24: 9-27, 2000 19. de Bernard B. Glycoproteins in the local mechanism of calcification. Clin Orthop Rel Res. 162: 233-244, 1982 20. Dolce C, Kinniburgh AJ, Dziak R. Immediate early gene induction in rat osteoblastic cells after mechanical deformation. Archs. Oral Biol. 41: 1101-1108, 1996 21. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 89: 747-754, 1997 22. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell Biochem. 88: 446-454, 2003 23. Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblast cell line MC3T3-E1. British J. Nutrition. 86: 145-149, 2001 24. Geest JPV, Martino ESD, Vorp DA. An analysis of the complete strain field within FlexercellTM membranes. J. Biomech. 37: 1923-1928, 2004 25. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry. 329: 77-84, 2004 26. Griffiths GS, Moulson AM, Petrie A, James IT. Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crecicular fluid during different stages of orthodontic treatment. J. Clin Periodontol. 25(6): 492-498, 1998 27. Hale LV, Ma YF, Santerre. Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Calcif Tissue Int. 67: 80-84, 2000 28. Hitomi K, Torii Y, Tsukagoshi N. Increase in the activity of alkaline phosphate by L-ascorbic acid 2-phosphate in a human osteoblast cell line, HuO-3N1. J Nutr Sci Vitaminol. 38(6): 535-544, 1992 29. Hou LT, Yaeger JA. Cloning and characterization of human gingival and periodontal ligament fibroblasts. J. Periodontol. 64: 1209-1218, 1993 30.Howard PS, Kucich U, Taliwal R, Korostoff JM. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J. Periodont Res. 33: 500-508, 1998 31. Hsieh AH, Tsai CMH, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KLP. Time dependent increase in type-III collagen gene expression in medial collateral ligament fibroblasts under cyclic strains. J. Orthoped Res. 18: 220-227, 2000 32. Ignatius A, Blessing H, Lieder A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Firemert B, Claes L. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials. 26: 311-318, 2005 33. Ishikawa S, Iwasaki K, Komaki M, Ishikawa Isao. Role of ascorbic acid in periodontal ligament cell differentiation. J. Periodontol. 75: 709-716, 2004 34. Ivanovski S, Li H, Hasse HR, Bartold PM. Expression of bone associate macromolecules by gingival and periodontal ligament fibroblasts. J. Periodont Res. 36:131-141, 2001 35. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J. Biol Chem. 268: 9049-9054, 1993 36. Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclic tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J. Dent Res. 85(5): 457-462, 2006 37. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce Osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner Res. 17: 210-220, 2002 38. Kamalia N, McCulloch CAG, Tenebaum HC, Limeback H. Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow stromal cell cultures. Blood. 79(2): 320-326, 1992 39. Kasperk C, Schneider U, Sommer U, Niethard F, Ziegler R. Differential effects of glucocorticoids on human osteoblastic cell metabolism in vitro. Calcif Tissue Int. 57(2): 120-126, 1995 40. Kasugai S, Shibata S, Suzuki S, Susami T, Ogura H. Characterization of a system of mineralized-tissue formation by rat dental pulp cells in culture. Arch Oral Biol. 38(9): 769-777, 1993 41. Kawarizadeh A, Bourauel C, Gotz W, Jager A. Early response of periodontal ligament cells to mechanical stimulus in vivo. J. Dent Res. 84(10): 902-906, 2005 42. Kawase T, Sato S, Miake K, Saito S. Alkaline phosphatase of human periodontal ligament fibroblast-like cells. Adv Dent Res. 2(2): 234-239, 1988 43. Kikuiri T, Hasegawa T, Yoshimura Y, Shirakawa T, Oguchi H. Cyclic tension force activates nitric oxide production in cultured human periodontal ligament cells. J. Periodontol. 71: 533-539, 2000 44. Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, Ducy P, Geiser AG. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol. 17(3): 423-435, 2003 45. Koiek M, Shimokawa H, Kanno Z, Ohya K, Soma K. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner Metab. 23: 219-255, 2005 46. Komori T. Runx2, a multifunctional transcription factor in skeletal development. J. Cell Biochem. 87: 1-8, 2002 47. Kondo Y, Irie K, Ikegame M, Ejiri S, Hanada K, Ozawa H. Role of strmal cells in osteoclast differentiation in bone marrow. J. Bone Miner Metab. 19(6): 352-358, 2001 48. Lallier TE, Spencer A, Fowler MM. Transcript profiling of periodontal fibroblasts and osteoblast. J. Periodontol. 76: 1044-1055, 2005 49. Lazcano O, Li CY, Pierre RV, O’Duffy JD, Beissner RS, Abell-Aleff PC. Clinical utility of the alizarin red S stain on permanent preparations to detect calcium-containing compounds in synovial fluid. Am J. Clin Pathol. 99(1): 90-96, 1993 50. Lekic P, McCulloch CAG. Periodontal ligament cell populations: the central role of fibroblasts in creating a unique tissue. The Anatomical record. 245: 327-341, 1996 51. Lekic P, Sodek J, McCulloch CAG. Relationship of cellular proliferation to expression of osteopontin and bone sialoprotein in regenerating rat periodontium. Cell Tissue Res. 285: 491-500, 1996 52. Leonard EP. Enzyme histochemistry of periodontal pathogenesis in the rice rat. Cell Molec Biol. 24:241-248, 1979 53. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 14: 1-41, 2004 54. Long p, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1β-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J. Dent Res, 80(5): 1416-1420, 2001 55. Long P, Liu F, Piesco N, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periondontal ligamental cells in vitro. Bone. 30(4): 547-552, 2002 56. Longui CA, Santos MC, Formiga CB, Oliveria DVA, Rocha MN, Faria CDC, Kochi C, Monte O. Antiproliferative and apoptotic potencies of glucocorticoids: nonconcordance with their anti-inflammatory and immunosuppressive properties. Arq Bras Endocrinol Metab. 49(3): 378-383 2005 57. Mariotti A. The extracellular matrix of the periodontium: dynamic and interactive tissue. Periodontology 2000. 3: 39-93, 1993. 58. Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of humanperiodontal ligament cells in vitro. Arch Oral Biology. 43: 987-997, 1998 59. McCulloch CAG, Bordin S. Role of fibroblast subpopulations in periodontal physiology and pathology. J. Periodontal Res. 26: 144-154, 1991 60. McCulloch CAG, Lekic P, McDKee MD. Role of physical forces in regulating the form anf function of the periodontal ligament. Periodontology 2000. 24: 56-72, 2004 61. Mehrotra M, Saegusa M, Voznesensky O, Pilbeam C. Role of Cbfa1/Runx2 in the fluid shear stress induction of COX-2 in osteoblasts. Biochem Biophy Res Communications. 341: 1225-1230, 2006 62. Michelini LC, Krieger EM. Aortic caliber changes during development of hypertension in freely moving rats. Am J. Physiol. 250: H662-H671, 1986. 63. Mullender M, EI Haj AJ, Yang Y, Van Duin MA, Burger EH, Klein-Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42: 14-21, 2004 64. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 89: 773-779, 1997 65. Nohutcu RM, McCauley LK, Koh AJ, Somerman MJ. Expression of extracellular matrix protein in human periodontal ligament cells during mineralization in vitro. J Periodontol. 68: 320-327, 1997 66. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y. Effect of cellular aging on the induction of cycloxygenase-2 by mechanical stress in human periodontal ligament cells. Mech Ageing Dev. 108(2): 151-163, 1999 67. Pavlin D, Jelica GH. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 12(5):414-424, 2001 68. Peter SJ, Liang CR, Kim DJ, Widmer MS, Mikos AG. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerophosphate, and L-ascorbic acid. J. Cell Biochem. 71: 55-62, 1998 69. Price P. Osteocalcin. Bone and Mineral Research. 1: 157-190, 1983 70. Prince CW. Secondary structure predictions for rat osteopontin, Connect Tissue Res. 21: 15-20, 1989 71. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A. The effect of centrifugal force on mRNA levels of collagenase, collagen type-1, tissue inhibitors of metalloproteinases and β-actin in cultured human periodontal ligament fibroblasts. J. Periodont Res. 39: 27-32, 2004 72. Rothamel D, Schwarz F, Sculean A, Herten M, Scheraum W, Becker J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Impl Res. 15:443-449 , 2004 73. Sandy JR, Farndale RW, Meikle MC. Recent advances in understanding mechanically induced bone remodeling and their relevance to orthodontic theory and practice. Am J. Orthodont Dentofac Orthop 103: 212-22, 1993 74. Saito M, Saito S, Ngan P, Shanfeld J, Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and vitro. Am J. Orthodont Dentofac Orthop 99: 226-240, 1991 75. Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with Runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol Chem. 279(40): 41998-42007, 2004 76. Shiga M, Kapila YL, Zhang Q, Hayami T, Kapila S. Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3-E1 osteoblast-like cell: potential association between collagenase expression and changes in alkaline phosphatase phenotype. J. Bone Miner Res. 18: 67-77, 2003 77. Shimizu N, Ozawa Y, Yamaguchi M, Goseki T, Ohzeki K, Yoshimitsu A. Induction of COX-2 expression by mechanical tension force in human periodontal ligament clls. J. Periodontol. 69: 670-677, 1998 78. Somerman MJ, Archer SY, Imm GR, Foster RA. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J. Dent Res. 67: 66-70, 1988 79 Stanford CM, Stevens JW, Brand RA. Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA. J. Biomechanics. 28(12): 1419-1427, 1995 80. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H. Expression of MMP-8 and MMP-13 genes in the periodontal during tooth movement in rats. J Dent Res. 82(2): 646-651, 2003 81. Taria M, Nakao H, Takahashi J, Araki Y. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J. Oral Rehabilitation. 30: 697-701, 2003 82. Theilig C, Bernd A, Leyhausen G, Kaufmann R, Geurtsen W. Effects of mechanical force on primary human fibroblasts derived from the gingival and the periodontal ligament. J. Dent Res. 80(8): 1777-1780, 2001 83. Vande Geest JP, Di Martino ES, Vorp DA. An analysis of the complete strain field with FlexcellTM membranes J. Biomech. 37: 1923-1928, 2004 84. Van der Pauw MTM, Klein-Nulend J, van den Bos T, Burger EH, Everts V, Beertsen W. Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity. J. Periodont Res. 35: 335-343, 2000 85. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Arch Oral Biology. 47: 465-471, 2002 86. Yamaguchi M, Shimizu N. Identification of factors mediating the decrease of alkaline phosphatase activity caused by tension-force in periodontal ligament cells. Gen Pharmacol. 25(6): 1229-1235, 1994 87. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y, Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Archs Oral Biol. 39: 877-884, 1994 88. Yamaguchi M, Shimizu N, Shibata Y, Abiko Y. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. J. Dent Res. 75(3): 889-894, 1996 89. Yamaguchi M, Shimizu N, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Archs Orat Biol. 39(10): 877-884, 1994 90. Yamakawa K, Iwasaki H, Masuda I, Ohjimi Y, Honda I, Saeki K, Zhang J, Shono E, Naito M, Kikuchi M. The utility of alizarin red s staining in calcium pyrophosphate dehydrate crystal deposition disease. J. Rheumatol. 30(5): 1032-1035, 2003 91. Yashino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulatiors in cultured human gingival and periodontal ligament fibroblasts. J. Periodont Res. 38: 405-410, 2003 92. Yuge L, Okubo A, Miyashita T, Kumagai T, Nikawa T, Takeda S, Kanno M, Urabe Y, Sugiyama M, Kataoka K. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem Biophy Res Communications. 311: 32-38, 2003 93. Young AD, Phipps DE, Astroff AB. Large-scale double-staining of rat fetal skeletons using Alizarin Red S and alcian blue. Tetraology. 61(4): 273-276, 2000 94. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK. The bone specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol Chem. 277: 23934-23941, 2002 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32163 | - |
| dc.description.abstract | 齒列矯正治療時,矯正力量所引起的牙周韌帶與牙周組織反應是促成牙齒移動的關鍵因素。牙周韌帶是厚度僅0.15-0.38公釐介於牙根與齒槽骨之間的特殊軟組織結構,它的主要功能是使牙齒固定在齒槽骨上維持正常的牙齒位置及牙周組織的結構形態,並且負責牙周組織的修復與再生。無論是咀嚼時的咬合力、傷害性咬合接觸力以及齒列矯正力量,在機械力量刺激所引起的牙周組織適應與重塑過程中,牙周韌帶細胞都扮演極關鍵角色。基礎細胞生物學的研究顯示牙周韌帶細胞具有造骨細胞表型特徵,許多研究也顯示機械力量刺激會影響牙周韌帶細胞的生長與分化,然而在細胞生長與檢測造骨細胞表型特徵上,不同研究的結果並不一致。本研究的目的在探討一般培養液與含有L-ascorbic acid 2-phosphate(0.05mM)、sodium β-glycerophosphate(10 mM)及dexamethasone(10 -7 M)的促進基質鈣化培養液下的牙周韌帶細胞,在不同培養時間(7天、14天、21天)、未受力與施予不同程度週期性張力刺激下(3%、10%;0.1Hz;24hours),其細
胞分化、造骨細胞表型分化指標基因與其他相關基因的基因表現。 本研究結果發現:(1)牙周韌帶細胞在促進基質鈣化培養液下會表現細胞外基質鈣化並強化其成骨指標蛋白的基因表現,且隨著培養時間而增強。(2) 3%的週期性張力刺激會提升在正常培養液細胞的ALP、OC、Cbfa-1表現,10%則是抑制作用;3%與10%的週期性張力均抑制在促進基質鈣化培養液細胞的ALP、OC、Cbfa-1表現。(3) 3%與10%週期性張力會提升COL-I、COX-2的基因表現;3%週期性張力會提升COL-III mRNA表現,10%則是下降。因此本實驗推論牙周韌帶細胞在不同程度的分化時期,對於相同程度的機械力刺激反應並不相同。此外,細胞外基質也會受機械力 量所調控。 | zh_TW |
| dc.description.abstract | A mechanical force applied to a tooth is transmitted to the root surrounding tissues of the periodontium and initiates remodeling activities that allow for movement of the tooth through alveolar bone. The periodontal ligament (PDL) , in normal thickness from 0.15mm to 0.38mm, is a unique structure situated between the hard tissues of the alveolar bone and cementum. The PDL contains a large number of highly specialized fibroblasts that are believed to involve the normal maintenance, repair and regeneration of the ligament, the cementum and alveolar bone. PDL fibroblasts have been shown to possess the phenotypes of osteoblasts and to undergo osteoblast differentiation in response to various stimuli. The research results in the responses of PDL cells to mechanical strain varied due to different experiment models, different strain patterns and different strain levels. We hypothesize that the differentiation stage of PDL cells determines the gene expression of osteogenic markers (alkaline phosphatase, osteocalcin), transcription factor for osteoblastic differentiation (Cbfa-1/Runx2), extracellular matrix proteins (COL-I, COL-III) and proinflammatory gene (COX-2) when PDL cells responding to mechanical strain in vitro. In this study, the human PDL cells were cultured in standard medium or mineralizing medium with osteogenic factors, such as L-ascorbic acid 2-phosphate (0.05mM), sodium β- glycerophosphate (10 mM) and dexamethasone (10 -7 M). We examined the influences of culture periods (7 , 14, 21 days), addition of osteogenic supplements and the effects of different magnitudes of cyclic tensional force (3% v.s. 10% elongation, 0.1Hz, 6 cycles/
min ) for 24 hours on the responses of PDL cells. Our results demonstrated that the osteogenic supplements of mineralizing medium induced the extracellular matrix mineralization and enhanced the expression of osteoblastic phenotype in PDL cell culture, which increased in a time-dependent manner. The mRNA expression of ALP、OC、Cbfa-1 of PDL cells cultured with standard medium was up regulated by 3% cyclic tensional force, but down regulated by 10% cyclic tensional force. However, the mRNA expression of ALP、OC、Cbfa-1 in PDL cells cultured with mineralizing medium decreased by both levels of cyclic tensional force, and this regulation was dependent on the magnitude of the force. The mRNA expression of COL-1 and COX-2 was increased by both levels of mechanical stimulation. The mRNA expression of COL-III was up regulated by 3% cyclic tensional force, but down regulated by 10% tensional force. These results suggest that PDL cells when cultured with different culture medium receiving different mechanical loads, have the ability to induce a variety of biological responses including altering ECM protein synthesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:34:36Z (GMT). No. of bitstreams: 1 ntu-95-R92422020-1.pdf: 2941958 bytes, checksum: 623575a2516ea9f6cfe5546764050efe (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | ◎目錄……………………………………………………………… I
◎表次目錄………………………………………………………… III ◎圖次目錄………………………………………………………… IV ◎中文摘要………………………………………………………… VII ◎英文摘要………………………………………………………… VIII ◎第一章 引言……………………………………………………… 1 ◎第二章 實驗目的………………………………………………… 14 ◎第三章 實驗材料與方法………………………………………… 15 ◎第四章 結果……………………………………………………… 22 ◎第五章 討論……………………………………………………… 33 ◎第六章 結論……………………………………………………… 51 ◎第七章 未來研究方向…………………………………………… 53 ◎參考文獻…………………………………………………… 96 *表一、過去文獻關於牙周韌帶細胞培養接受機械力量刺激的研究……54 *表二、本實驗依不同礦化誘導程度與施力程度的實驗設計……………58 *表三、本實驗半定量-反轉錄-聚合酶鏈鎖反應所使用之引子序列、黏合溫度與延伸反應的循環回數…………………………………… 59 ►圖一、細胞接受單、雙軸向機械張力形變示意圖………………………60 ►圖二、Flexercell® strain unit (FX-3000 Tension System)示意圖…………60 ►圖三、載柱(Loading post)設計示意圖……………………………………61 ►圖四、本實驗設計流程圖與觀察項目……………………………………62 ►圖五、以正常培養液培養之牙周韌帶細胞隨培養時間及不同張力刺激在 細胞形態上的變化………………………………………………63 ►圖六、以促進細胞基質鈣化培養液培養之牙周韌帶細胞隨培養時間及不 同張力刺激在細胞形態上的變化………………………………64 ►圖七、以二種培養液培養牙周韌帶細胞一週後,在不同施力程度下以掃 描式電子顯微鏡(SEM)對細胞形態的觀察………………………65 ►圖八、細胞以促進細胞基質鈣化培養液培養後,鹼性磷酸酶的染色觀察 ……………………………………………………………………66 ►圖九、細胞以促進細胞基質鈣化培養液培養後,鹼性磷酸酶染色的光學 顯微鏡(OM)觀察…………………………………………………67 ►圖十、細胞以正常培養液培養後,鹼性磷酸酶的染色觀察……………68 ►圖十一、細胞以正常培養液培養後,鹼性磷酸酶染色的光學顯微鏡(OM) 觀察……………………………………………………………69 ►圖十二、細胞以促進細胞基質鈣化培養液培養後,ARS的染色觀察 …………………………………………………………………70 ►圖十三、細胞以促進細胞基質鈣化培養液培養後,細胞基質礦化小體 在光學顯微鏡下(OM)的觀察…………………………………71 ►圖十四、細胞以正常培養液培養後,ARS的染色觀察與細胞基質礦化小 體在光學顯微鏡下(OM)的觀察………………………………72 ►圖十五、牙周韌帶細胞礦化程度的半定量分析………………………73 ►圖十六、牙周韌帶細胞在不同程度張力刺激下,礦化程度的半定量分析 …………………………………………………………………74 ►圖十七、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其ALP mRNA的變化………………………………75 ►圖十八、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與 10%週期性張力刺激24小時後,ALP mRNA的變化…………76 ►圖十九、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,ALP mRNA的變化……………………………77 ►圖二十、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其OC mRNA的變化……………………………………78 ►圖二十一、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,OC mRNA的變化………79 ►圖二十二、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,OC mRNA的變化…………………………80 ►圖二十三、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其COL-I mRNA的變化…………………………81 ►圖二十四、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3% 與10%週期性張力刺激24小時後,COL-I mRNA的變化…… ………………………………………………………………82 ►圖二十五、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-I mRNA的變化……………………83 ►圖二十六、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培 養時間後,其COL-III mRNA的變化………………………84 ►圖二十七、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-III mRNA的變化………………………………………………………………85 ►圖二十八、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COL-III mRNA變化………………………86 ►圖二十九、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培 養時間後,其Cbfa-1 mRNA的變化…………………………87 ►圖三十、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,Cbfa-1 mRNA的變化………88 ►圖三十一、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,Cbfa-1 mRNA的變化……………………89 ►圖三十二、二種培養液培養之牙周韌帶細胞,在未施力條件下,不同培養時間後,其COX-2 mRNA的變化…………………………90 ►圖三十三、以促進細胞基質鈣化培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COX-2 mRNA的變化…91 ►圖三十四、以正常培養液培養之牙周韌帶細胞,在受3%與10%週期性張力刺激24小時後,COX-2 mRNA的變化……………………92 ►圖三十五、BioFlex® 彈性膜以有限元素分析法(FEA)觀察受力分佈情形 ………………………………………………………………93 ►圖三十六、BioFlex® 彈性膜內圈與外圈受力差異反應於鹼性磷酸酶的 染色結果……………………………………………………93 ►圖三十七、不同株牙周韌帶細胞以促進細胞基質鈣化培養液培養,對ALP 與ARS的染色觀察…………………………………………94 ►圖三十八、牙周韌帶細胞在未接受週期性張力刺激下,以促進細胞基質 鈣化培養液培養在不同基底培養盤上,ALP與ARS的染色觀 察……………………………………………………………95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牙周韌帶細胞 | zh_TW |
| dc.subject | 週期性張力刺激 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | yclic tensional force | en |
| dc.subject | Periodontal ligament cells | en |
| dc.subject | cell differentiationc | en |
| dc.title | 人類牙周韌帶細胞的分化、基因表現與對機械張力刺激反應之研究 | zh_TW |
| dc.title | Effects of Mechanical Tensional Force on Differentiation and Gene Expression of Human Periodontal Ligament Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭景暉 | |
| dc.contributor.oralexamcommittee | 簡華宏 | |
| dc.subject.keyword | 牙周韌帶細胞,細胞分化,週期性張力刺激, | zh_TW |
| dc.subject.keyword | Periodontal ligament cells,cell differentiationc,yclic tensional force, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
