請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | |
| dc.contributor.author | Chien-Chang Chen | en |
| dc.contributor.author | 陳建彰 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:34:21Z | - |
| dc.date.available | 2006-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Appleman, L. J., and Boussiotis, V. A. (2003). T cell anergy and costimulation. Immunol Rev 192, 161-180.
Bononi, F., Mazzone, M., Portale, G., Forte, P., Falcone, C., and Silveri, N. G. (2005). [Asthma: current therapeutic approach]. Recent Prog Med 96, 494-498. Brandtzaeg, P., Berstad, A. E., Farstad, I. N., Haraldsen, G., Helgeland, L., Jahnsen, F. L., Johansen, F. E., Natvig, I. B., Nilsen, E. M., and Rugtveit, J. (1997). Mucosal immunity--a major adaptive defence mechanism. Behring Inst Mitt, 1-23. Calhoun, W. J., Sedgwick, J., and Busse, W. W. (1991). The role of eosinophils in the pathophysiology of asthma. Ann N Y Acad Sci 629, 62-72. Chen, W., Jin, W., Cook, M., Weiner, H. L., and Wahl, S. M. (1998). Oral delivery of group A streptococcal cell walls augments circulating TGF-beta and suppresses streptococcal cell wall arthritis. J Immunol 161, 6297-6304. Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., and Wahl, S. M. (2003a). Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198, 1875-1886. Chen, W., and Wahl, S. M. (2003b). TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 14, 85-89. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., and Weiner, H. L. (1994). Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237-1240. Chen, Y., Inobe, J., and Weiner, H. L. (1997). Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol 178, 62-68. Chen, Z. M., O'Shaughnessy, M. J., Gramaglia, I., Panoskaltsis-Mortari, A., Murphy, W. J., Narula, S., Roncarolo, M. G., and Blazar, B. R. (2003). IL-10 and TGF-beta induce alloreactive CD4+CD25- T cells to acquire regulatory cell function. Blood 101, 5076-5083. Chung, Y., Lee, S. H., Kim, D. H., and Kang, C. Y. (2005). Complementary role of CD4+CD25+ regulatory T cells and TGF-beta in oral tolerance. J Leukoc Biol 77, 906-913. Cookson, W. (2004). The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 4, 978-988. Corrigan, C. J., and Kay, A. B. (1991). CD4 T lymphocyte activation in acute severe asthma. Int Arch Allergy Appl Immunol 94, 270-271. Faria, A. M., Maron, R., Ficker, S. M., Slavin, A. J., Spahn, T., and Weiner, H. L. (2003). Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-beta/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. J Autoimmun 20, 135-145. Faria, A. M., and Weiner, H. L. (2005). Oral tolerance. Immunol Rev 206, 232-259. Fowler, E., and Weiner, H. L. (1997). Oral tolerance: elucidation of mechanisms and application to treatment of autoimmune diseases. Biopolymers 43, 323-335. Fuss, I. J., Boirivant, M., Lacy, B., and Strober, W. (2002). The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 168, 900-908. Garside, P., Steel, M., Worthey, E. A., Kewin, P. J., Howie, S. E., Harrison, D. J., Bishop, D., and Mowat, A. M. (1996). Lymphocytes from orally tolerized mice display enhanced susceptibility to death by apoptosis when cultured in the absence of antigen in vitro. Am J Pathol 149, 1971-1979. Herz, U., Renz, H., and Wiedermann, U. (2004). Animal models of type I allergy using recombinant allergens. Methods 32, 271-280. Hirahara, K., Hisatsune, T., Nishijima, K., Kato, H., Shiho, O., and Kaminogawa, S. (1995). CD4+ T cells anergized by high dose feeding establish oral tolerance to antibody responses when transferred in SCID and nude mice. J Immunol 154, 6238-6245. Hoyne, G. F., Le Roux, I., Corsin-Jimenez, M., Tan, K., Dunne, J., Forsyth, L. M., Dallman, M. J., Owen, M. J., Ish-Horowicz, D., and Lamb, J. R. (2000). Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol 12, 177-185. Hurst, S. D., Cooper, C. J., Sitterding, S. M., Choi, J., Jump, R. L., Levine, A. D., and Barrett, T. A. (1999). The differentiated state of intestinal lamina propria CD4+ T cells results in altered cytokine production, activation threshold, and costimulatory requirements. J Immunol 163, 5937-5945. Inada, S., Yoshino, S., Haque, M. A., Ogata, Y., and Kohashi, O. (1997). Clonal anergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen. Cell Immunol 175, 67-75. Iwasaki, A., and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190, 229-239. Jutel, M., Akdis, M., Budak, F., Aebischer-Casaulta, C., Wrzyszcz, M., Blaser, K., and Akdis, C. A. (2003). IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33, 1205-1214. Kang, B., Kim, K. M., and Kang, C. Y. (1999). Oral tolerance by a high dose OVA in BALB/c mice is more pronounced and persistent in Th2-mediated immune responses than in Th1 responses. Immunobiology 200, 264-276. Knott, P. G., Gater, P. R., and Bertrand, C. P. (2000). Airway inflammation driven by antigen-specific resident lung CD4(+) T cells in alphabeta-T cell receptor transgenic mice. Am J Respir Crit Care Med 161, 1340-1348. Koh, D. R. (1998). Oral tolerance: mechanisms and therapy of autoimmune diseases. Ann Acad Med Singapore 27, 47-53. Kraus, T. A., and Mayer, L. (2005). Oral tolerance and inflammatory bowel disease. Curr Opin Gastroenterol 21, 692-696. Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, A. B., Sporn, M. B., Ward, J. M., and Karlsson, S. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90, 770-774. Lehrer, S. B., Wild, L. G., Bost, K. L., and Sorensen, R. U. (1999). Immunotherapy for food allergies. Past, present, future. Clin Rev Allergy Immunol 17, 361-381. Marth, T., Strober, W., and Kelsall, B. L. (1996). High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralization of IL-12 augments TGF-beta secretion and T cell apoptosis. J Immunol 157, 2348-2357. Martin, J. G., Suzuki, M., Ramos-Barbon, D., and Isogai, S. (2004). T cell cytokines: animal models. Paediatr Respir Rev 5 Suppl A, S47-51. Masopust, D., Vezys, V., Marzo, A. L., and Lefrancois, L. (2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413-2417. Mayer, L., and Shao, L. (2004). Therapeutic potential of oral tolerance. Nat Rev Immunol 4, 407-419. Meiler, F., Zimmermann, M., Blaser, K., Akdis, C. A., and Akdis, M. (2006). T-cell subsets in the pathogenesis of human asthma. Curr Allergy Asthma Rep 6, 91-96. Melamed, D., and Friedman, A. (1994). In vivo tolerization of Th1 lymphocytes following a single feeding with ovalbumin: anergy in the absence of suppression. Eur J Immunol 24, 1974-1981. Miller, A., Lider, O., Roberts, A. B., Sporn, M. B., and Weiner, H. L. (1992). Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A 89, 421-425. Mowat, A. M., Parker, L. A., Beacock-Sharp, H., Millington, O. R., and Chirdo, F. (2004). Oral tolerance: overview and historical perspectives. Ann N Y Acad Sci 1029, 1-8. Nagler-Anderson, C. (2000). Tolerance and immunity in the intestinal immune system. Crit Rev Immunol 20, 103-120. Nagler-Anderson, C. (2001). Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol 1, 59-67. Nakao, A., Kasai, M., Kumano, K., Nakajima, H., Kurasawa, K., and Iwamoto, I. (1998). High-dose oral tolerance prevents antigen-induced eosinophil recruitment into the mouse airways. Int Immunol 10, 387-394. Neutra, M. R. (1998). Current concepts in mucosal immunity. V Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 274, G785-791. Neutra, M. R., Frey, A., and Kraehenbuhl, J. P. (1996). Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345-348. Neutra, M. R., and Kozlowski, P. A. (2006). Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6, 148-158. Parameswaran, N., Samuvel, D. J., Kumar, R., Thatai, S., Bal, V., Rath, S., and George, A. (2004). Oral tolerance in T cells is accompanied by induction of effector function in lymphoid organs after systemic immunization. Infect Immun 72, 3803-3811. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2, 361-367. Rizzo, L. V., Morawetz, R. A., Miller-Rivero, N. E., Choi, R., Wiggert, B., Chan, C. C., Morse, H. C., 3rd, Nussenblatt, R. B., and Caspi, R. R. (1999). IL-4 and IL-10 are both required for the induction of oral tolerance. J Immunol 162, 2613-2622. Robinson, J. K., Blanchard, T. G., Levine, A. D., Emancipator, S. N., and Lamm, M. E. (2001). A mucosal IgA-mediated excretory immune system in vivo. J Immunol 166, 3688-3692. Russo, M., Nahori, M. A., Lefort, J., Gomes, E., de Castro Keller, A., Rodriguez, D., Ribeiro, O. G., Adriouch, S., Gallois, V., de Faria, A. M., and Vargaftig, B. B. (2001). Suppression of asthma-like responses in different mouse strains by oral tolerance. Am J Respir Cell Mol Biol 24, 518-526. Schramm, C., Herz, U., Podlech, J., Protschka, M., Finotto, S., Reddehase, M. J., Kohler, H., Galle, P. R., Lohse, A. W., and Blessing, M. (2003). TGF-beta regulates airway responses via T cells. J Immunol 170, 1313-1319. Sears, M. R., Burrows, B., Flannery, E. M., Herbison, G. P., Hewitt, C. J., and Holdaway, M. D. (1991). Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325, 1067-1071. Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Allen, R., Sidman, C., Proetzel, G., Calvin, D., and et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693-699. Simecka, J. W. (1998). Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev 34, 235-259. Smith, K. M., Eaton, A. D., Finlayson, L. M., and Garside, P. (2000). Oral tolerance. Am J Respir Crit Care Med 162, S175-178. Street, N. E., and Mosmann, T. R. (1990). IL4 and IL5: the role of two multifunctional cytokines and their place in the network of cytokine interactions. Biotherapy 2, 347-362. Strober, W., Fuss, I., Boirivant, M., and Kitani, A. (2004). Insights into the mechanism of oral tolerance derived from the study of models of mucosal inflammation. Ann N Y Acad Sci 1029, 115-131. Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., and Sakaguchi, S. (1998). Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10, 1969-1980. Takenaka, T., Kuribayashi, K., Nakamine, H., Tsujimoto, M., Fukuhara, Y., Maeda, J., Mihara, M., Uchiyama, Y., and Ohsugi, Y. (1993). Regulation by cytokines of eosinophilopoiesis and immunoglobulin E production in mice. Immunology 78, 541-546. Tanaka, K. (2005). [Oral tolerance]. Nippon Rinsho 63 Suppl 4, 389-394. Umetsu, D. T., and DeKruyff, R. H. (1997). Th1 and Th2 CD4+ cells in the pathogenesis of allergic diseases. Proc Soc Exp Biol Med 215, 11-20. Verhagen, J., Taylor, A., Blaser, K., Akdis, M., and Akdis, C. A. (2005). T regulatory cells in allergen-specific immunotherapy. Int Rev Immunol 24, 533-548. Weiner, H. L. (2001a). The mucosal milieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol 2, 671-672. Weiner, H. L. (2001b). Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3, 947-954. Weiner, H. L. (2004). Current issues in the treatment of human diseases by mucosal tolerance. Ann N Y Acad Sci 1029, 211-224. Wilder, J. A., Collie, D. D., Bice, D. E., Tesfaigzi, Y., Lyons, C. R., and Lipscomb, M. F. (2001). Ovalbumin aerosols induce airway hyperreactivity in naive DO11.10 T cell receptor transgenic mice without pulmonary eosinophilia or OVA-specific antibody. J Leukoc Biol 69, 538-547. Wills-Karp, M. (1999). Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17, 255-281. Yasutomi, Y. (2005). [Immunogene therapy against allergic asthma]. Nippon Rinsho 63 Suppl 12, 664-670. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32158 | - |
| dc.description.abstract | 利用口服給與抗原的方式,可以誘導針對此種特定抗原的免疫耐受性(immune tolerance)現象產生,而這種現象或許將會是一個用來治療諸如氣喘等免疫疾病的一種方式。近年來的研究也指出,藉由持續口服給與小鼠卵白蛋白(ovalbumin, OVA)這種抗原,可以誘導小鼠產生口服耐受性(oral tolerance)的現象,而這種現象,目前推測是因為活化調節性T細胞(regulatory T cells);或是因為抗原專一性T細胞(antigen-specific T cells)的減少(deletion)。不過引起口服耐受性的詳細機制目前仍不清楚;因此,本次研究中,我們利用帶有OVA-T細胞受器(OVA-T cell receptor)基因的基因轉殖小鼠,做為研究的實驗動物。透過此種動物氣喘模式的建立,同時給與基因轉殖小鼠口服餵食不同劑量的卵白蛋白,誘導針對卵白蛋白抗原之口服耐受性的產生,並觀察產生口服耐受性之小鼠與氣喘小鼠在呼吸道過度反應(airway hyperresponsiveness)上的差異性,以及肺部沖洗液中,浸潤到肺部細胞型態的分佈情況,並藉此檢視抗原專一性T細胞的變化。本次實驗中,我們發現給予餵食卵白蛋白而產生口服耐受性的小鼠,其呼吸道過度反應測試比起利用抗原致敏的老鼠還要降低許多,而肺沖洗液中的嗜伊紅性白血球(eoxinophil)的數量也減低許多,進一步的檢測小鼠細胞激素的分泌則發現,被誘導產生口服耐受的小鼠,其體內Th2細胞激素IL-4,比起氣喘致敏的小鼠有著明顯減少,但對於過敏免疫反應有調節性的細胞激素包括IL-10和TGF- | zh_TW |
| dc.description.abstract | Oral administration of antigens can induce immune tolerance to specific antigens and this characteristic phenomenon might be used as a potential treatment for allergic diseases, such as asthma. Recent researches have shown that oral tolerance induced by continuous feeding of ovalbumin (OVA) in the murine model can result in the activation of regulatory T cells and/or deletion of antigen-specific T cells. However, the underlying mechanisms are yet to be clarified. Therefore, we would like to study further the functional change of antigen-specific T cells after oral tolerance induction. We use OVA-T-cell receptor (OVA-TCR) transgenic mice on the BALB/c background, which recognizes the 323-339 peptide fragment of OVA, as model animal.
First, we established an animal model with airway hyperresponsiveness, antigen specific IgE production and eosinophilia in OVA-TCR transgenic mice. In this study, oral tolerance was induced by feeding different dose of OVA, and then examined the number and function of OVA-specific T cells. The results showed that oral tolerance induced by both high-dose and low-dose of OVA could suppress the reactivity of asthma, such as the reduction of Th2-cytokine (IL-4, IL-5) secretion, decreased airway hyperresponsiveness, reduced eosinophila, and increase regulatory cytokine (TGF-β and IL-10) secretion. Furthermore, the numbers of OVA-specific T cell were increased in the group with high-dose oral tolerance. Taken together, these findings indicate that oral tolerance induced by feeding low-dose of antigen generates TGF-β-secreting T cells, and that high-dose oral tolerance can be achieved by angeric antigen-specific T cells. Although much more studies are needed, these results suggest that TGF-β may play a crucial role in the induction of oral tolerance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:34:21Z (GMT). No. of bitstreams: 1 ntu-95-R93450014-1.pdf: 1057589 bytes, checksum: 24e187ab0ecbae1b36a67e4c748b220b (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Abstract……………………………………………………………I 中文摘要…………………………………………………………II Abbreviation…………………………………………………………III Contents…………………………………………………………IV Contents of figures………………………………………………………………V Chapter I. General introduction…………………………………1 1. Asthma……………………………………2 2. Mucosal immunity…………………………………4 3. Oral tolerance………………………………………6 4. Aim of study…………………………………………10 Chapter II. Materials and Methods……………………………11 Chapter III. Results………………………………………19 1. Establishment of murine model of asthma…………20 2. The induction of oral tolerance with the model of OVA-TCR transgenic mice…………………………………22 3. The study on high-dose and low-dose induced oral tolerance in the transgenic murine model of asthma…………25 Chapter IV. Discussion……………………………29 Figures………………………………………………36 References…………………………………………65 Contents of figures Figure 1. Time line of animal model of protocol.----------------------------------------37 Figure 2. The titers of OVA-specific antibodies in the serum of different strain mice.--------------------------------------------------------------------------------38 Figure 3. Airway hyper-responsiveness (AHR) in OVA-sensitized and –challenged mice.---------------------------------------------------------------------------------40 Figure 4. The cell compositions in bronchoalveolar lavage (BALF).------------------41 Figure 5. Proliferation of splenocytes under the stimulation of different concentration of OVA.------------------------------------------------------------42 Figure 6. Fluorescence-activated cell sorting (FACS) analysis of lymphocyte from Peyer’s patch.----------------------------------------------------------------------43 Figure 7. The OVA-specific antibodies level in the serum.-----------------------------44 Figure 8. The effects of oral administration of OVA on AHR.--------------------------45 Figure 9. The cell compositions in bronchoalveolar lavage (BALF) from asthmatic group, oral tolerance group and negative control group mice.--------------46 Figure 10. Cytokine profile from BALF.----------------------------------------------------47 Figure 11. Proliferation of splenocytes under the stimulation of different concentration of OVA in oral tolerance mice.---------------------------------48 Figure 12. The cytokine profiles from splenocytes supernatant.-------------------------49 Figure 13. Fluorescence-activated cell sorting (FACS) analysis of lymphocyte from splenocytes and Peyer’s patch.--------------------------------------------------51 Figure 14. The expression level of OVA-specific IgE in the serum.---------------------53 Figure 15. The effect of high-dose and low-dose induced oral tolerance on airway hyperresponsiveness (AHR).-----------------------------------------------------54 Figure 16. The cell compositions in bronchoalveolar lavage (BALF).------------------55 Figure 17. The cytokine profiles from BALF.---------------------------------------------56 Figure 18. Proliferation of splenocytes under the stimulation of different concentration of OVA.------------------------------------------------------------58 Figure 19. The cytokine profiles from splenocytes supernatant.-------------------------59 Figure 20. Fluorescence-activated cell sorting (FACS) analysis of lymphocyte from splenocytes.------------------------------------------------------------------------61 Figure 21. Fluorescence-activated cell sorting (FACS) analysis of lymphocyte from Peyer’s patch.----------------------------------------------------------------------62 Figure 22. Fluorescence-activated cell sorting (FACS) analysis of cytokine secreting OVA-specific T cells.-------------------------------------------------------------63 | |
| dc.language.iso | en | |
| dc.subject | 氣喘 | zh_TW |
| dc.subject | 口服耐受性 | zh_TW |
| dc.subject | 基因轉殖小鼠 | zh_TW |
| dc.subject | Asthma | en |
| dc.subject | Transforming growth factor-beta | en |
| dc.subject | Oral tolerance | en |
| dc.subject | Transgenic mice | en |
| dc.title | 利用基因轉殖小鼠的氣喘模式研究口服耐受性之機制 | zh_TW |
| dc.title | Study of the mechanism of oral tolerance in a transgenic murine model of asthma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭和珍,吳文勉 | |
| dc.subject.keyword | 口服耐受性,基因轉殖小鼠,氣喘, | zh_TW |
| dc.subject.keyword | Oral tolerance,Transgenic mice,Asthma,Transforming growth factor-beta, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
