請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32128完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚宗珍(Chung-Chen Yao) | |
| dc.contributor.author | Pei-Chuan Hung | en |
| dc.contributor.author | 洪珮娟 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:32:58Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | 1. Bone engineering, 1999.
2. Parfitt AM. The cellular basis of bone remodeling: the quantum concept re-examined in light of recent advances in the cell biology of bone. Calcif Tissue Int. 1984; 36: S37 3. Contemporary Orthodontics, third edition, 1999. 4. Ash P, Loutit JF, Townsend KMF. Osteoclasts derived from haemopoietic stem cells. Nature. 1980; 283: 669-670. 5. Owen M. Lineage of osteogenic cells and their relationship to the stromal system, In: Peck WA, ed. Bone and Mineral Research, vol. 3. Amsterdam. The Netherlands: Elsevier; 1985: 1-24. 6. Pfeilschifter J, Chenu C, Biral A, et al. Interlukin-1 and tumor necorsis factor stimulate the formation of osteoclast- like cells in vitro. J Bone Miner Res. 1995; 10: 295-301. 7. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 1986; 261: 4337-4345. 8. Carter DR. Mechanical loading history and skeletal biology. J Biomech. 1987; 20: 1095-1109. 9. Ingber DE. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cyt. 1994; 150: 173-224. 10. Chiquet M, Sarasa A, Renedo F, et al. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 2003; 22: 73-80. 11. Kessler D, Dethlefsen S, Haase I, et al. Fibroblasts in mechanically stressed collagen lattices assum a synthetic phenotype. J. Biol. Chem. 2001; 276: 36575-36585. 12. Schild C, Trueb B. Mechanical stress is required for high-level expression of connective growth factor. Exp. Cell. Res. 2002; 274: 83-91. 13. Lin YC, Ho CH, Grinnell F. Decreased PDGF receptor kinase activity in fibroblasts contracting stressed collagen matrices. Exp. Cell. Res. 1998; 240: 377-387. 14. Brigstock DR. The connective tissue growth factor/ cysteine-rich 61/ nephroblastoma overexpressed (CCN) family. Endocr. Res. 1999; 20: 189-206. 15. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issue. Mol. Pathol. 2001; 54: 57-79. 16. Christof S, Beat T. Three members of the connective tissue growth factor family CCN are differentially regulated by mechanical stress. Biochimica et Biophysica Acta. 2004; 1691: 33-40. 17. Leu SJ, Liu Y, Chen N, et al. Identification of a novel integrin binding site α6β1 in the angiogenic inducer CCN1 (Cyr61). J. Biol. Chem. 2003; 278: 33801-33808. 18. Bernard Perbal. CCN proteins: multifunctional signaling regulators. Lancet 2004; 363: 62-64. 19. Dong X, Dong, Y, Xiangjun T, et al. Cyr61 is overexpressed in Gliomas and involved in integrin-linked kinase-mediated akt and β-catenin-TCF/Lef signaling pathways. Cancer Research. 2004; 64: 1987-1996. 20. Yang J, Hong PK, Emeka I, et al. Cyr61 protects against hyperoxia-induced cell death via akt pathway in pulmonary epithelial cells. American Journal of Respiratory Cell and Molecular Biology. 2005; 33: 297-302. 21. Norbert S, Karin KR, Rita W, et al. Expression, purification, and functional testing of recombinant Cyr61/ CCN1. Protein Expression and Purification. 2005; 42: 219-225. 22. Manfred K, Steffen M, Dirk K, et al. Mechanisms of hypoxic gene regulation of angiogenesis factor cyr61 in melanoma cells. J. Biol. Chem. 2003; 278: 45651-45660. 23. Laurent B, Lisa LW, John M, et al. The human cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells. Cancer Latters xx. 2006: 1-7. 24. Norbert S, Ulrich N, Jutta S, et al. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Communication and Signaling. 2005, 3:5. 25. Norbert S, Hoyland JA, Siggelkow H, et al. The human extracellular matrix molecule CYR61 expression is associated with conditions of enhanced bone formation and with the proliferative state of osteoblasts. J. Bone Miner. Res. 2001; 16: s238 26. Norbert S, Lechner A, Groll C, et al. The human analogue of murine cysteine rich protein 61 is a 1α, 25-dihydroxyvitamin D3 response immediate early gene in human fetal osteoblasts: regulation by cytokines, growth factors, and serum. Endocrinology, 1998; 139: 1761-1770. 27. Mo FE, Mutean AG., Chen CC, et al. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol. Cell Boil. 2002; 22: 8709-8720. 28. Schild C, Trueb B. Mechanical stress is required for high-level expression of connective tissue growth factor. Exp. Cell. Res. 2002; 274: 83-91. 29. Perbal B. NOV (nephroblastoma overexpressed) and the ccn family of genesP structural and functional issues. Mol. Pathol. 2001; 54: 57-79. 30. Kumar S, Hand AT, Connor JR, et al. Identification and cloning of a connective tissue growth factor-like cDNA from human osteoblasts encoding a novel regulator of osteoblast functions. J. Biol. Chem. 1999; 274: 17123-17131. 31. Hurvitz JR, Suwairi WM, VanHul W, et al. Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat. Genet. 1999; 23:94-98. 32. Babic AM, et al. Fisp12/ mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin αvβ3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol. Cell. Biol. 1999; 19: 2958-2966. 33. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674. 34. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Pysiol. 2001; 280: c1358-c1366. 35. Banai S, Shweiki D, Pinson A, et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc. Res. 1994; 28: 1176-1179. 36. Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development. 1999; 126: 1149-1159. 37. Belgore FM, Blann AD, Li-Saw-Hee FL, et al. Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am. J. Cardiol. 2001; 87: 805-807. 38. Carmeliet P. Angiogenesis in health and disease. Nat. Med. 2003; 9: 653-660. 39. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100: 57-70. 40. Lin CH, Richard MG, Bassam A, et al. Hypoxia induces HIF-1and VEGF expression in chondrosarcoma cells and chondrocytes. Journal of Orthopedic Research. 2004; 22: 1175-1181. 41. Anna Tropea et al. Regulation of VEGF synthesis and release by human luteal cells in vitro. J. Clin. Endocrin. Metab. 2006; 10: 42. Otani N, Minami S, Yamoto M, et al. The vascular endothelial growth factor/fms-like tyrosin kinase system in human ovary during the menstrual cycle and early pregnancy. J. Clin. Endocrin. Metab. 1999; 84: 3845-3851. 43. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell. Sci. 2001;114: 853-865. 44. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischemic limb. Lancet. 1996; 348: 370-374. 45. Steinbrech DS, Mehrara BJ, Saadeh PB, et al. Hypoxia regulates vegf expression and cellular proliferation by osteoblasts in vitro. Plast. Reconstr. Surg. 1999; 104(3): 738-747. 46. Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 1996; 271(2): 603-606. 47. Yutaka Y, Yoshio E, Kayoko T, et al. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int. J. Clin Oncol. 2005; 10:318-327. 48. David RB. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis. 2002; 5:153-165. 49. Inoki I, Shiomi T, Hashimoto G., et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 2002; 277: 46248-46255. 50. Hashimoto G., Inoki I, Fujii Y, et al. Matrix metalloproteases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 2002; 277: 36288-36295. 51. Castilla MA, Neria F, Guadalupe R, et al. Tumor-induced endothelial cell activation: role of vascular endothelial growth factor. Am. J. Physiol Cell Physiol. 2004; 286: 1170-1176. 52. Skobe M, Hawighorst T, Jackson DG., et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med. 2001; 7: 197-198. 53. Thomas K, Sabine K, Saddettin S, et al. Differentiation expression of VEGF-A and angiopoietins in cartilage tumors and regulation by interlukin-1β. Cancer. 2006; 106(9): 2028-2038. 54. Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J. Biol. Chem. 1997; 272: 7151-7158. 55. Genhai Z, Ghassan M, Saed GD, et al. Hypoxia up-regulates the effects of prostaglandin E2 on tumor angiogenesis in ovarian cancer cells. Gynecologic Oncology. 2004; 94: 422-426. 56. Kim CH, Cho YS, Chun YS, et al. Early expression of myocardial HIF-1α in response to mechanical stresses. Circular Research. 2002; 90: e25-e33. 57. Lee JW, Bae SH, Kim SH, et al. Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Experimental and Molecular Medicine. 2004; 36(1): 1-12. 58. Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct bonding to the β-domain of the von Hippel-Lindau protein. Nature Cell Boil. 2000; 2: 423-427. 59. Lando D, Peet DJ, Gorman JJ, et al. Asparagine hydroxylation of the HIF transactivation domain. Science. 2002; 295: 858-861. 60. Gothie E, Richard DE, Berra E, et al. Identification of alternative spliced variants of human hypoxic-inducible factor-1alpha. J. Biol. Chem. 2002; 275: 6922-6927. 61. Chun YS, Choi EJ, Kim TY, et al. A dominant-negative isoform lacking exon 11 and 12 of the human hypoxic-inducible factor-1α gene. Biochem J. 2002; 362: 71-79. 62. Chun YS, Lee KH, Choi EJ, et al. Phorbol ester stimulates the nonhypoxic induction of a novel hypoxia-inducible factor 1α isoform: implications for tumor promotion. Cancer Research 2003; 63: 8700-8707. 63. Makino Y, Cao R, Svensseon K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001; 414: 550-554. 64. Maynard MA, Qi H, Chung J, et al. Multiple splice variants of the human HIF-3alpha locus are targets of the VHL E3 ubiquitin ligase complex. J. Biol. Chem. 2003; 278: 11032-11040. 65. Haddad JJ, Land SC. A non-hypoxic ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett. 2001; 505:269-274. 66. Stiehl DP, Jelkmann W, Wenger RH, et al. Normoxic induction of the hypoxia-inducible factor -1alpha by insulin and interlukin-1 involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 2002; 512: 157-162. 67. Fukuda R. Insulin like growth factor 1 induces HIF-1-mediated VEGF expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem 2002; 277: 38205-38211. 68. Zhong H. Modulation of HIF-1α expression by the epidermal growth factor/PI3K/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research. 2000; 60: 1541-1545. 69. Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedulin and HIF-1 gene in cultured HL-1 cardiomyocytes. Biochem. Biophys. Res. Commun. 1999; 265:382-386. 70. Kim HH, Lee SE, Chung WJ, et al. Stabilization of hypoxia-inducible factor -1α is involved in the hypoxic stimuli-induced expression of vascular endothelial growth factor in osteoblastic cells. Cytokines. 2002; 17(1): 14-27. 71. Dohoon Kim and Jongkyeong Chung. Journal of Biochemistry and Molecular Biology. 2002; 35(1): 106-115 72. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes & Development 1999; 13: 2905-2927. 73. Paez J, Sellers WR. PI3K/PTEN/AKT pathway: A crucial mediator of oncogenic signaling. Cancer Treatment & Research. 2003; 115: 145-167. 74. Dekker LV, Segal AW. Perspectives: signal transduction: signals to move cells. Science2000; 287: 982-985. 75. Yao R, Copper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995; 267: 2003-2006. 76. Kandel ES, Hay N. The regulation and activations of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res. 1999; 253:210-229. 77. Edward A. Akt/ protein kinase B. Critical Care Medicine. 2005; 33(12): s420-s422. 78. Gerber HP, McMurtrey A, Ferrar N, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidyl 3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 1998; 273:30336-30343. 79. Dimmerler S, Assmus B, Zeiher AM, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells; involvement in susspression of apoptosis. Circ. Res. 1998; 83:334-341. 80. Kim I, Kim HG., Koh GY, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Circ. Res. 2000; 86:24-29. 81. Kim I., Kim JH, Koh GY, et al. Angiopoietin-2 at high concentraction can enhance endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Oncogene 2000; 19:4549-4552. 82. Goligorsky MS, Budzikowski AS, Noiri E. Co-operation between endothelial and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin. Exp. Pharmacol. Physiol. 1999; 26: 269-271. 83. Fukumura D, Jain RK. Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Review. 1998; 17: 77-89. 84. Fulton D, Gratton JP, Franke TF, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999; 399: 597-601. 85. Chandra CK, Vincent M. AKT crystal structure and AKT-specific inhibitors. Oncogene. 2005; 24:7493-7501. 86. Coelho MJ, Cabral AT, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serial passaged human bone marrow cells cultured in α-MEM and in DMEM. Biomaterials. 2000; 21: 1087-1094. 87. Pamela GR, John DT. Human bone cells in vitro. Clacif. Tissue. Int. 1985; 37: 453-460. 88. Rattner A, Sabido O, Frey J, et al. Characterization of human osteoblastic cells: influence of the culture conditions. In vitro Cell. Dev. Biol.-Animal. 1997; 33: 757-762. 89. Rattner A, Sabido O, Frey J, et al. Mineralization and alkaline phosphatase activity in collagen lattices populated by human osteoblasts. Clacif. Tissue. Int. 2000; 66: 35-42. 90. Kathleen KK, Warren KR. Extracellular pH modulates the activity of cultured human osteoblasts. Journal of Cellular Biochemistry. 1998; 68: 83-89. 91. Peck WA, Birge SJ, Fedak SA. Bone cells: Biochemical and biological studies after enzymatic isolation. Science. 1964; 146: 1476. 92. Aubin JE. Bone stem cells: new directions and dimensions in cellular biochemistry. Journal of cellular biochemistry. 1998; 30/31(25th anniversary issue supplement): 73-82. 93. Nuttall ME, Patton AJ, Gowen M, et al. Human trabecular bones are able to express both osteoblastic and adipocytic phenotype: implications for osteogenic disorder. Journal of Bone Mineral Research. 1998; 13: 371-382. 94. Aubin JE, Turksen K, Heersche JNM. Osteoblatic cell lineage. Cellular and molecular biology of bone. New York academic Press. 1993: 1-45. 95. Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone. 1999; 24: 549-554. 96. Tasevski V, Sorbetti JM, Hart DA, et al. Influence of mechanical and biological signals on gene expression in human MG63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-β1 on MMP-1 and MMP-3 mRNA levels. Biochem. Cell Biol. 2005; 83(1): 96-107. 97. Sakoda S, Shin H, Kishida A. Mechanical Stretching of human osteoblastic-like cells stimulates bone morphogenic proteins and macrophage colony-stimulating factor productions. Pathophysiology. 1999; 6(1): 63-69. 98. Banes AJ, Gilbert J, Taylor D, et al. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. Journal of Cell Science. 1985; 75(1): 35-42 99. Noriyoshi S, Yasuhito O, Yoshimitsu A, et al. Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. Journal of Periodontology. 1998; 69: 670-677. 100. Fermor B, Weinberg JB, Guilak F. et al. The effect of static and intermittent compression on nitric oxide production in articular cartilage explants. J. Oethop.Res. 2001. 101. Ozawa H, Imamura K, Suda T, et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J. Cell. Physiol. 1990; 142: 177-185. 102. Wong M, Seigrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone. 2003; 33(4): 685-693. 103. Huang SP, Wu MS, Kuo ML, et al. Cyclooxygenesase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. Journal of Biomedical Science. 2005; 12: 229-241. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32128 | - |
| dc.description.abstract | 引發缺氧可誘導因子HIF-1α及血管內皮生長因子VEGF的產生,主要與血管新生的機制有關,此機制參與了如修復組織缺氧、骨骼重塑,甚或腫瘤生成的過程,其中骨骼重塑的複雜機轉則長期為引人關注的研究方向之一。目前已知:機械力量刺激在骨骼重塑的機制上扮演著重要的調節角色,且藉由機械力量刺激也被證實可於人類牙周韌帶纖維母細胞上引發血管新生的過程,然而利用機械力量刺激於成骨母細胞上,是否亦會引起血管新生的機制,並進一步影響骨骼重塑的路徑目前則有待證實。因此本研究首先利用MG63類成骨母細胞株作為實驗對象,施予週期性張力刺激三天後觀察細胞表徵之變化,並以半定量反轉錄-聚合酶鏈鎖反應分析COX-2、HIF-1α及VEGF的表現,結果發現:三者的mRNA level在機械張力刺激下的先後表現為COX-2最先(60分鐘後),HIF-1α其次(24-48小時),而VEGF可能同時受兩者影響,分別於5小時及48小時有兩次上升表現。再以西方點墨法分析其蛋白質的表現量,結果三者上升表現之順序為COX-2最先(5小時),HIF-1α其次(5-48)小時,而VEGF最後(48小時)。另外再以同樣之張力條件,刺激於正常成骨母細胞上24小時並觀察其變化,結果發現其基因與蛋白質之上升表現皆早於MG63細胞,在mRNA level為 COX-2:10分鐘,VEGF:10分鐘,HIF-1α:5小時,而蛋白質表現為COX-2:10分鐘,HIF-1α:5小時,VEGF:10分鐘與24小時。由本實驗結果證實:藉由張力刺激於兩種成骨母細胞上可誘導HIF-1α及VEGF的產生,且成骨母細胞分化程度之不同亦會影響其對張力刺激的反應,由此可推論經由機械張力刺激所引發之血管新生與骨骼重塑機轉應廣泛地存在於人類成骨母細胞中。 | zh_TW |
| dc.description.abstract | Induction of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) is mainly involved in angiogenesis, which is required for many biological and/or pathological procedures, such as repairing ischemic tissue, bone remodeling, and cancer metastasis. Among them, bone remodeling is the most relevant issue in orthodontics. It is widely accepted that mechanical stimuli play an important role in bone remodeling during growth and development. Also, it had been proved that mechanical stress would induce production of angiogenic regulators in cultured human periodontal ligament fibroblasts. However, whether mechanical stress would have similar effects on human osteoblastic cells remains to be addressed. In this study, two different populations of osteoblast-like cells were used: human osteosarcoma cell line-MG63 and human bone derived primary cells, to receive mechanical stimuli. Morphological changes of these cells after mechanical stress was recorded. Expression of Cyclooxygenase-2 (COX-2), HIF-1α and VEGF was analyzed by semi-quantitative PT-PCR and western blotting. Our results showed that in MG63 cells with mechanical stretching, COX-2 and HIF-1α could be induced sequentially at 1 hour and one day respectively, and then followed by VEGF with biphasic increase at 5 hour and 2 days. The production of VEGF seems to relate to increase of COX-2 since COX-2 inhibitor could decrease the expression of VEGF significantly. These findings were similar in the bone derived cells thought with a quicker response to mechanical stress than MG63 cells. Therefore, the results indicate that mechanical stress could induce the production of HIF-1α and VEGF in human osteoblasts and the responses to mechanical stress might depend on the differentiation status of cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:32:58Z (GMT). No. of bitstreams: 1 ntu-95-P92422007-1.pdf: 11743885 bytes, checksum: 16f334f61a3e1ef28fcd5ace74a5bb75 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄……………………………………………………………………. I
圖次目錄………………………………………………..II 表次目錄……..………………………………………………….III 中文摘要………………………………………… ………IV 英文摘要………………………………………………………V 第一章 引言…………………………………………………………1 第二章 文獻回顧……………………………………………………………5 第三章 實驗材料與方法………………………………………………………27 第四章 結果…………………………………………………………41 第五章 討論…………………………………………………………90 第六章 結論………………………………………………………101 參考文獻………………………………………………..108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | 重塑 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 血管內皮生長因子 | zh_TW |
| dc.subject | hypoxia | en |
| dc.subject | angiogenesis | en |
| dc.subject | vascular endothelial growth factor | en |
| dc.subject | remodeling | en |
| dc.title | 藉由週期性張力之刺激於人類MG63類成骨母細胞及正常骨衍生細胞
引發缺氧可誘導因子-1α及血管內皮生長因子的產生 | zh_TW |
| dc.title | Induction of Hypoxia Inducible Factor-1α (HIF-1α) and Vascular Endothelial Growth Factor (VEGF) in MG63 Osteoblast-like Cells and Normal Human Bone Derived Cells by Cyclic Mechanical Stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭景暉,簡華宏 | |
| dc.subject.keyword | 缺氧,血管內皮生長因子,血管新生,重塑, | zh_TW |
| dc.subject.keyword | hypoxia,vascular endothelial growth factor,angiogenesis,remodeling, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 11.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
