請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林依依(I-I Lin) | |
dc.contributor.author | Feng-Chin Wang | en |
dc.contributor.author | 王鳳琴 | zh_TW |
dc.date.accessioned | 2021-06-13T03:31:30Z | - |
dc.date.available | 2008-12-31 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-27 | |
dc.identifier.citation | Black, M. L., Gamache, J. F., Marks Jr., F. D., Samsury, C. E., and Willoughby H. E., 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of Vertical Shear on Structure and Intensity. Mon. Wea. Rev., 130, 2291-2312
Black, P., G. E. A. D’Asaro, J. R. French and W. M. Drennan, 2006: Synthesis of major results from the Coupled Boundary Layer Air-sea Transfer Experiment (CBLAST) in hurricanes (2003-2004), 27th Conf. on Hurricanes and Tropical Meteorology. Charnock, H., 1995: Wind stress on water surface, Quart. J. Roy Meteorol. Soc.,81, 639-640. Chou, S.-H., 1993: A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean-air turbulent fluxes during cold-air outbreaks. Boundary-Layer Meteorology, 64, 75-100. Chou, S.-H., R. M. Atlas, C.-L. Shie and J. Ardizzone, 1995: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123, 2405-2425. Chou, S.-H., C.-L. Shie, R. M. Atlas and J. Ardizzone, 1997: Air-sea fluxes retrieved from Special Sensor Microwave Imager data. J. Geophys. Res., 102, 12705-12726. Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 3256-3273. Cione, J. J., E. W. Uhlhorn, 2003: Sea surface temperature variability in Hurricanes: implications with respect to intensity change. Mon. Wea. Rev., 131, 1783-1796 Curry, J. A., A. Bentamy, M. A. Bourassa, D. Bourras, E. F. Bradley, M. Brunke, S. Castro, S.-H.,Chou, C. A. Clayson, W. J. Emery, L. Eymard, C. W. Fairall, M. Kubota, B. Lin, W. Perrie, R. A. Reeder, I. A. Renfrew, W. B. Rossow, J. Schulz, S. R. Smith, P. J. Webster, G. A. Wick, and X. Zeng, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409-424. Donelan M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On th limiting aerodynamic roughness of the ocean in very strong winds, Geophys. Res. Lett., 31, L18306. Dyer, A. J. and Hicks, B. B., 1970: Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteorol. Soc., 96, 715-721 Dyer, A. J., 1974: A review of flux-profile relationships, Boundary-Layer Meteorol, 7, 363-372 Dyer, A. J. and Bradley, E. F., 1982: An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE, Boundary-Layer Meteorol, 22, 3-19 Edson, J., C. Fairall, P. Sullivan, 2006: Evaluation and continued improvements to th TOGA COARE 3.0 algorithm using CBLAST data. 27th Conf. on Hurricanes and Tropical Meteorology, April 2006. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976 Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669 Emanuel, K. A., 2003: A Similarity Hypothesis for Air-Sea Exchange at Extreme Wind Speeds. J. Atmos. Sci., 60, 1420-1428. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 101, 3747-3764 Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Climate, 16, 571-591. Francey, R. J. and Garratt, J. R., 1981: Interpretation of Flux-Profile Observations at ITCE (1976), J. Appl. Meteorol., 20, 603-618 Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Extended Abstracts. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172-173. Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev. 105, 915-929. Kubota, M., N. Iwasaka, S. Kizu, and M. Knoda, 2002: Japanese Ocean Flux Data Sets with Use of Temote Sensing Observations (J-OFURO). J. Oceanogr., 58, 213-215. Large, W. G. and Pond, S., 1981: Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr, 11, 324-336. Lin, I-I, W. T., Liu, C.-C. Wu, John C. H. Chiang, and C.-H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, no. 3, 1131. Lin, I-I, C.-C. Wu, K. A. Emanuel, I-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The Interaction of Supertyphoon Maemi (2003) With a Warm Ocean Eddy. Mon. Wea. Rev., 133, 2635-2649. Liu, W. T., K. B. Katsaros, and J. A. Bousinger, 1979: Bulk parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface, J. Atmos. Sci., 36, 1722-1734 Liu, W. T., X. Xie, P. S. Polito, S. P. Xie, and H. Hashizume, 2000: Atmospheric Manifestation of Tropical Instability Wave Observed by QuikSCAT and Tropical Rain Measuring Mission, Geophys. Res. Lett., 27, 16, 2545-2548. Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Monthly Weather Review, 133, 3644-3660 Powell, M. D., P. J. Vickery, T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422, 279-283. Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411-8427 Pun, I.-F., I-I Lin, C.-R. Wu, and D.-S. Ko, 2006: Estimation of upper ocean thermal structure by satellite altimetry and its validation in the Western North Pacific Ocean for typhoon intensity forecast. IEEE Trans. Geosci. Remote Sens., (in press) Schultz, J., P. Schluessel, and H. Grassl, 1993: Water vapor in the atmospheric boundary layer overoceans from SSM/I measurements, Int. J. Remote Sensing (14), 2773-2789. Schulz, J., J. Meywerk, S. Ewald, and P. Schlussel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10, 2782-2795 Wang, Y., and C.-C. Wu, 2003: Current understanding of tropical cyclone structure and intensity changes-A review. Meteor. Atmos. Phys., 87, 257-278 Wentz, F. J., 1997: A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102, 8703-8718 Wentz, F. J., C. Gentemann, D. Smith, D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850. Wong, M. L. M. and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859-1876 Wu, C.-C., P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H. Chou, J.-S. Hong, G.-C. Lu, C.-T. Fong, K.-C. Hsu, I-I Lin, P.-L. Lin, and C.-H. Liu, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An Overview. Bull. Amer. Meteor. Soc., 86, 787-790. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32095 | - |
dc.description.abstract | Information of air-sea turbulent fluxes is critical in air-sea interaction research. Satellite-based flux estimation is currently the most viable way to obtain such flux data over vast oceans at frequent intervals. This work use recently-available advanced remote sensing data sets (including sea surface temperature from TRMM/TMI and AMSR-E, ocean surface wind vectors from QuikSCAT and ADEOS2-SeaWinds) to improve the existing Goddard Satellite Based Surface Turbulent Fluxes version 2 scheme. Thus, spatial resolution is improved from 1∘by 1∘to 0.25 ∘by 0.25 ∘and temporal resolution is improved from daily to 2-4 times daily.
Air-sea surface fluxes of sensible and latent heat provide energy to tropical cyclone; they are vital role in typhoon-ocean interaction research. To obtain such flux information under cyclone’s wind condition, the latest high-wind transfer coefficients from field and laboratory experiments are used. Also, impact of typhoon’s self-induced SST cooling is incorporated in the flux estimation to obtain more realistic fluxes. With the high-wind flux estimations, all 40 tropical cyclones, including depression, tropical storm, and typhoons during July to September from 2003-2005 are studied. Wind shear is also estimated and jointly analyzed with the flux data to study typhoon’s intensity change. It is found that typically typhoons can intensify under wind shear value of less than 10 ms-1. When vertical wind shear is small and with sufficient flux supply, typhoons may rapidly intensify. Insufficient flux supply from ocean or moving to high wind shear region or landfall are the causes for typhoon’s intensity decay. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:31:30Z (GMT). No. of bitstreams: 1 ntu-95-R93229012-1.pdf: 1520468 bytes, checksum: 90e040a42d78e79094aa5a1967528c7c (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Table of Contents
List of Tables……………………………………………………..ii List of Figures……………………………………………………iii Chapter 1 Introduction….…………………………………………1 Chapter 2 Improvement on air-sea flux estimation under normal condition…………………………………………………….4 2.1 Introduction………………………………………….……4 2.2 The Goddard Satellite-based Surface Turbulent Fluxes, version 2 scheme…………………………………………………… 5 2.2.1 Basic description………………………………… 5 2.2.2 GSSTF2’s near surface air humidity and other input data derived from SSM/I……………………………………8 2.3 Improvement on GSSTF2 flux estimation…………… 12 2.3.1 Improvement on sea surface temperature…… 12 2.3.2 Improvement on surface wind……………………14 2.4 Summary of improvements……………………………… 15 2.5 Validation of the estimated fluxes…………………15 Chapter 3 Estimation of air-sea fluxes under typhoon condition...............................................18 3.1 Introduction………………………………………………18 3.2 Transfer coefficients under high wind condition…19 3.3 Incorporation of inner-core sea surface temperature cooling in flux estimation……………………… 20 Chapter 4 Application on typhoon intensity change…………24 4.1 Introduction……………………………………………… 24 4.2 Estimation of vertical wind shear…………………………24 4.3 Typhoon’s intensification…………………………… 26 4.3.1 Average condition for shear and flux…………26 4.3.2 Case study1: Comparison of two cases both under weak shear but of different flux supply…………… 27 4.3.3 Case study 2: cases showing intensification once wind shear decreases…………………………………………27 4.4 Typhoon’s decay………………………………………… 28 4.4.1 Intensity decay due to land…………………… 28 4.4.2 Intensity decay due to increase in shear……28 4.4.3 Intensity decay due to insufficient flux……29 Chapter 5 Conclusion……………………………………………… 30 References…………………………………………………………… 32 | |
dc.language.iso | en | |
dc.title | 利用衛星估算海氣通量及其與颱風強度的關係 | zh_TW |
dc.title | Estimation of Air-sea Fluxes by Remote Sensing-
Improvements and Application on Typhoon Intensity Change | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉振榮,周佳,吳俊傑,吳清吉 | |
dc.subject.keyword | 海氣通量, | zh_TW |
dc.subject.keyword | air-sea flux, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。