Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖振鐸(Chen-Tuo Liao)
dc.contributor.authorYu-Shu Linen
dc.contributor.author林育澍zh_TW
dc.date.accessioned2021-06-13T03:29:17Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation1 . Awad I.A., Rees C.A., Hernandez-Boussard T., Ball C.A., Sherlock G. (2004). Caryoscope: an Open Source Java application for viewing microarray data in a genomic context. BMC Bioinformatics, 5:151.
2 . Barnhill R.L., Argenyi Z.B., From L., Glass L.F., Maize J.C., Mihm MC Jr., Rabkin M.S., Ronan S.G., White W.L., Piepkorn M. (1999). Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Human Pathology, 30(5):513-520.
3 . Basseville M. (1988). Detecting changes in signals and systems-a survey. Automatica, 24(3):309-326.
4 . Bastian B.C., LeBoit P.E., Hamm H., Brocker E.B., Pinkel D. (1998). Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Research, 58(10):2170-2175.
5 . Bastian B.C., Wesselmann U., Pinkel D., Leboit P.E. (1999). Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. The Journal of Investigative Dermatology, 113(6):1065-1069.
6 . Baum L.E., Petrie T., Soules G., Weiss N. (1970). A maximisation techniques occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics, 41(1):164-171.
7 . Breiman L., Friedman J.H., Olshen R.A., Stone, C.J. (1984). Classification and Regression Trees. Chapman & Hall, New York.
8 . Daruwala R.S., Rudra A., Ostrer H., Lucito R., Wigler M., Mishra B. (2004). A versatile statistical analysis algorithm to detect genome copy number variation. Proceedings National Academy of Science USA, 101(46):16292–16297.
9 . Davies J.J., Wilson I.M., Lam W.L., (2005). Array CGH technologies and their applications to cancer genomes. Chromosome Research, 13(3):237-248.
10 . Donoho D.L., Johnstone I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425-455.
11 . Donoho D.L., Johnstone I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of American Statistical Association, 90(432):1200-1224.
12. Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D., (1995). Wavelet shrinkage: asymptopia? (with discussion). Journal of the Royal Statistical Society, Series B, 57(2):301-337.
13. Dudoit S., Yang Y.H., Speed T.P., Callow M.J. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12(1):111-140.
14. du Manoir S., Speicher M.R., Joos S., Schrock E., Popp S., Dohner H., Kovacs G., Robert-Nicoud M., Lichter P., Cremer T. (1993). Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Human Genetics, 90(6):590-610.
15. Eilers P.H.C. (2003). A perfect smoother. Analytical Chemistry, 75(14):3631-3636.
16. Eilers P.H.C., de Menezes R.X. (2005). Quantile smoothing of array CGH data. Bioinformatics, 21(7):1146-1153.
17. Fridlyand J., Snijders A.M., Pinkel D., Albertson D.G., Jain A. (2004). Hidden Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis, 90:132-153.
18. Forozan F., Karhu R., Kononen J., Kallioniemi A., Kallioniemi O.P. (1997). Genome screening by comparative genomic hybridization. Trends in genetics, 13(10):405-9.
19. Harvell J.D., Bastian B.C., LeBoit P.E. (2002). Persistent (recurrent) Spitz nevi: a histopathologic, immunohistochemical, and molecular pathologic study of 22 cases. American Journal of Surgical Pathology, 26(5):654-661.
20. Harvell J.D., Kohler S., Zhu S., Hernandez-Boussard T., Pollack J.R., van de Rijn M. (2004). High-resolution array-based comparative genomic hybridization for distinguishing paraffin-embedded Spitz nevi and melanomas. Diagnostic Molecular Pathology, 13(1):22-25.
21. Hastie T., Tibshirani R., Friedman J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.
22. Hsu L., Self S.G., Grove D., Randolph T., Wang K., Delrow J.J., Loo L., Porter P. (2005). Denoising array-based comparative genomic hybridization data using wavelets. Biostatistics, 6(2):211-26.
23. Hupe P., Stransky N., Thiery J.P., Radvanyi F., Barillot E. (2004). Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20(18):3413-3422.
24. Isola J., DeVries S., Chu L., Ghazvini S., Waldman F. (1994). Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. American Journal of Pathology, 145(6):1301-1308.
25. Jain A.N., Tokuyasu T.A., Snijders A.M., Segraves R., Albertson D.G., Pinkel D. (2002). Fully automatic quantification of microarray image data. Genome Research, 12(2):325-332.
26. Jong K., Marchiori E., Meijer G., Vaart A.V., Ylstra B. (2004). Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics, 20(18):3636-3637.
27. Jong K., Marchiori E., Vaart A.V., Ylstra B., Weiss M., Meijer G. (2003). Chromosomal breakpoint detection in human cancer. In Raidl G.R., Cagnoni S., Cardalda J.J.R., Corne D.W., Gottlieb J., Guillot A., Hart E., Johnson C.G., Marchiori E., Meyer J.A., Middendorf M. (eds), Applications of Evolutionary Computing, EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, EvoSTIM, Volume 2611 of LNCS, University of Essex, England, UK. Springer-Verlag, Berlin, 54-65.
28. Kallioniemi A., Kallioniemi O.P., Piper J., Tanner M., Stokke T., Chen L., Smith H.S., Pinkel D., Gray J.W., Waldman F.M. (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proceedings National Academy of Science USA, 91(6):2156-2160.
29. Kallioniemi A., Kallioniemi O.P., Sudar D., Rutovitz D., Gray J.W., Waldman F., Pinkel D. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083):818-821.
30. Kaufman L., Rousseeuw P.J., (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.
31. Kerr M.K., Afshari C.A., Bennett L., Bushel P., Martinez J., Walker N., Churchill G. (2002). Statistical analysis of a gene expression microarray experiment with replication. Statistica Sinica, 12(1):203-217.
32. Kim S.Y., Nam S.W., Lee S.H., Park W.S., Yoo N.J., Lee J.Y., Chung Y.J. (2005). ArrayCyGHt: a web application for analysis and visualization of array-CGH data. Bioinformatics, 21(10):2554-2555.
33. Kirchhoff M., Gerdes T., Rose H., Maahr J., Ottesen A.M., Lundsteen C. (1998). Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry, 31(3):163-73.
34. Koenker R.W., Basset G.W. (1978). Regression Quantiles. Econometrica, 46(1):33-50.
35. Lai W.R., Johnson M.D., Kucherlapati R., Park P.J. (2005). Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics, 21(19):3763-3770.
36. Lee M.T., Kuo F.C., Whitmore G.A., Sklar J. (2000). Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridization. Proceedings National Academy of Science USA, 97(18):9834-9839.
37. Levin B., Kline J. (1985). The CUSUM test of homogeneity with an application in spontaneous abortion pidemiology. Statistics in Medicine, 4(4):469–488.
38. Lingjaerde O.C., Baumbusch L.O., Liestol K., Glad I.K., Borresen-Dale A.L. (2005). CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics, 21(6):821-822.
39. Lundsteen C., Maahr J., Christensen B., Bryndorf T., Bentz M., Lichter P., Gerdes T. (1995). Image analysis in comparative genomic hybridization. Cytometry, 19(1):42-50.
40. Macville M., Veldman T., Padilla-Nash H., Wangsa D., O'Brien P., Schrock E., Ried T. (1997). Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochemistry and Cell Biology, 108(4-5):299-305.
41. Molinaro M.A., van der Laan M.J., Moore D.H. (2002). Comparative Genomic Hybridization Array Analysis. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 106. [http://www.bepress.com/ucbbiostat/paper106]
42. Myers C.L., Dunham M.J., Kung S.Y., Troyanskaya O.G. (2004). Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics, 20(18):3533-3543.
43. Olshen A.B., Venkatraman E.S., Lucito R., Wigler M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5(4):557-572.
44. Paris P.L., Albertson D.G., Alers J.C., Andaya A., Carroll P., Fridlyand J., Jain A.N., Kamkar S., Kowbel D., Krijtenburg P.J., Pinkel D., Schroder F.H., Vissers K.J., Watson V.J., Wildhagen M.F., Collins C., Van Dekken H. (2003). High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microarrays. The American Journal of Pathology, 162(3):763-70.
45. Picard F., Robin S., Lavielle M., Vaisse C., Daudin J.J. (2005). A statistical approach for array CGH data analysis. BMC Bioinformatics, 6:27.
46. Pinkel D., Albertson D.G. (2005). Comparative genomic hybridization. Annual Review of Genomics and Human Genetics, 6:331-354.
47. Pinkel D., Segraves R., Sudar D., Clark S., Poole I., Kowbel D., Collins C., Kuo W.L., Chen C., Zhai Y., Dairkee S.H., Ljung B.M., Gray J.W., Albertson D.G. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2):207-211.
48. Pollack J.R., Perou C.M., Alizadeh A.A., Eisen M.B., Pergamenschikov A., Williams C.F., Jeffrey S.S., Botstein D., Brown P.O. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1):41-46.
49. Polzehl J., Spokoiny S. (2002). Local likelihood modelling by adaptive weights smoothing. WIAS-Preprint 787.
50. Popescu N.C., Zimonjic D.B. (1997). Molecular cytogenetic characterization of cancer cell alterations. Cancer Genetics and Cytogenetics, 93(1):10-21.
51. Rabiner L.R., (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-285.
52. Schrock E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M.A., Ning Y., Ledbetter D.H., Bar-Am I., Soenksen D., Garini Y., Ried T. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274):494-497.
53. Sen A., Srivastava M.S. (1975). On tests for detecting a change in mean. Annals of Statistics, 3:98-108.
54. Shaban S.A. (1980). Change-point problem and two phase regression: an annotated bibliography. International Statistical Review, 48:83-93.
55. Siegmund D. (1986). Boundary crossing probabilities and statistical applications. Annals of Statistics, 14(2):361-404.
56. Simon R., Radmacher M.D., Dobbin. (2002). Design of studies using DNA microarrays. Genetic Epidemiology, 23(1):21-36.
57. Solinas-Toldo S., Lampel S., Stilgenbauer S., Nickolenko J., Benner A., Dohner H., Cremer T., Lichter P. (1997). Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer, 20(4):399-407.
58. Smyth G.K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3.
59. Squire J.A., Pei J., Marrano P., Beheshti B., Bayani J., Lim G., Moldovan L., Zielenska M. (2003). High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer, 38(3):215-225.
60. Venkatraman E.S. (1992). Consistency results in multiple change-point situations. Technical report, Department of Statistics. Stanford University.
61. Voullaire L., Stater H., Williamson R., Wilton L. (2000). Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Human Genetics, 106(2):210-217.
62. Vostrikova L.J. (1981). Detecting 'disorder' in multidimensional random processes. Soviet Mathematics Doklady, 24:55-59.
63. Wang P., Kim Y., Pollack J., Narasimhan B., Tibshirani R. (2005). A method for calling gains and losses in array CGH data. Biostatistics, 6(1):45-58.
64. Whittaker E.T. (1923). On a new method of graduation. Proceedings of the Edinburgh Mathematical Society, 41:63-75.
65. Wilhelm M., Veltman J.A., Olshen A.B., Jain A.N., Moore D.H., Presti JC Jr., Kovacs G., Waldman F.M. (2002). Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Research, 62(4):957-960.
66. Willenbrock H., Fridlyand J. (2005). A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics, 21(22):4084-4091.
67. Yang Y.H., Dudoit S., Luu P., Lin D.M., Peng V., Ngai J., Speed T.P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4):e15.
68. Andy Vierstraete (1999). [http://users.ugent.be/~avierstr]
69. Caryoscope user documentation. [http://dahlia.stanford.edu:8080/caryoscope]
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32044-
dc.description.abstract微陣列實驗技術是一個具有能夠同時偵測數千甚至上萬基因表現的特性且被廣泛的運用於生物領域上。微陣列基因體比較雜合法則是一種用來偵測在單一實驗中,DNA序列拷貝數目改變的技術。技術的原理是透過比較經由螢光標定後的螢光強度比值,藉以偵測大片段基因區域改變的幅度,並將這些變異的程度藉由圖形對應的方式表現出來。在統計方法的應用上,是為了要能夠有效的辨別出染色體的擴增與缺失現象。因此,將焦點置於分析染色體的擴增與缺失現象。沿用Lai et al. (2005)文中所模擬與比較的過程,透過整合既有的統計方析方法,如循環二元分割法、適應性權重平滑法與CGH分割法等方法。並使用PERL、PHP與Apache等網頁服務程式,開發出一套以R語言為後端演算的統計分析平台,提供資料的正規化、統計分析與染色體區域擴增與缺失圖形,最後藉由UCSC Genome Browser與ID Converter的註解,供使用者針對感興趣的生物問題來做探討。zh_TW
dc.description.abstractThe DNA microarray is widely used to investigate gene expression profiles of many thousands of genes simultaneously. And it has become a common tool for exploring various questions in many areas of biological and medical sciences. Specifically, array-based comparative genomic hybridization (Array CGH) is applied to screen alteration of DNA copy numbers genomewide. The main purpose of such application is to detect the altered DNA segments among genome sequences from a control (reference) treatment to a test treatment. Typically, efficient statistical tools are developed to compare the intensity ratios of spots representing the competitive hybridization between the control mRNA sample and the test mRNA sample, which are separately labeled with red (Cy5) and green (Cy3) fluorescence dyes. Users usually focus on the gain region and the loss region on each chromosome. In consequence, the differentially altered regions are displayed by graphical plots.
From the simulation results presented in Lai et al. (2005), several competing statistical methods are selected for analysis of Array CGH data, including Adaptive Weights Smoothing method, Circular Binary Segmentation method and CGH Segmentation method. Furthermore, we use Perl, PHP programming language and Apache web server to integrate the chosen statistical methods into an analysis platform under R language environment. The proposed platform offers normalization, identification of the differentially altered regions and plotting of the gain and loss regions genomewide. In addition, users can annotate information through UCSC Genome Browser and ID Converter for advanced analyses.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:29:17Z (GMT). No. of bitstreams: 1
ntu-95-R93621205-1.pdf: 4364787 bytes, checksum: 892cfb5c825ad5285aee43a98cf100e3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
第一章 緒論…………………………………………………………1
第一節 研究背景與動機………………………………………1
第二節 研究目的與架構………………………………………1
第二章 晶片簡介與資料說明………………………………………4
第一節 背景描述………………………………………………4
第二節 微陣列基因體比較雜合晶片簡介……………………8
第三節 實驗資料來源說明…………………………………14
第三章 文獻回顧…………………………………………………18
第一節 循環二元分割法……………………………………19
第二節 CGH分割法……………………………………………23
第三節 適應性權重平滑法…………………………………26
第四節 移動平均法…………………………………………30
第五節 分量平滑法…………………………………………32
第六節 凌波法………………………………………………34
第七節 染色體叢集法………………………………………38
第八節 最大事後機率估計法………………………………39
第九節 斷點偵測法…………………………………………41
第十節 染色體變異區域探勘法……………………………43
第十一節 隱藏式馬可夫模型…………………………………47
第四章 實驗數據分析與方法比較………………………………51
第一節 實驗數據分析………………………………………51
第二節 資料模擬與方法比較………………………………55
第五章 系統建置與架構…………………………………………62
第一節 系統建置架構………………………………………62
第二節 系統流程說明………………………………………65
第六章 結論與建議………………………………………………76
第一節 結論…………………………………………………76
第二節 未來研究方向與建議………………………………77
參考文獻………………………………………………………………79
附錄
附錄一 比較分析實驗資料的差異………………………………86
附錄二 系統使用說明手冊………………………………………95
圖目錄
圖1-1 研究架構……………………………………………………3
圖2-1 分子生物學的中心教條……………………………………5
圖2-2 三種染色體構造上的異常情形……………………………8
圖2-3 基因體比較雜合法原理……………………………………11
圖2-4 晶片影像……………………………………………………12
圖2-5 染色體區域圖形……………………………………………13
圖3-1 移動平均法…………………………………………………32
圖3-2 硬式臨界值演算法與軟式臨界值演算法的比較…………37
圖3-3 階層式分群樹狀結構………………………………………39
圖3-4 三階段異倍體偵測的過程…………………………………43
圖3-5 邊緣偵測過濾器的想法……………………………………44
圖4-1 個案四位於一號染色體長臂上增幅的情形………………54
圖4-2 個案四位於九號染色體上缺失的情形……………………54
圖4-3 個案五位於一號染色體短臂上缺失的情形………………55
圖4-4 ROC曲線的表示方法………………………………………57
圖4-5 資料模擬與統計方法………………………………………58
圖4-6 11種統計方法的比較………………………………………59
圖5-1 系統畫面……………………………………………………63
圖5-2 系統建置架構………………………………………………64
圖5-3 使用者介面架構……………………………………………65
圖5-4 資料分析流程………………………………………………66
圖5-5 cDNA資料格式範例…………………………………………67
圖5-6 BAC資料格式範例…………………………………………68
圖5-7 資料分析影像………………………………………………70
圖5-9 UCSC Genome Browser資料庫查詢頁面…………………73
圖5-9 ID Converter資料庫………………………………………73
表目錄
表2-1 實驗個案描述與結果………………………………………17
表4-1 統計方法來源與描述………………………………………56
表5-1 系統執行效能………………………………………………74
dc.language.isozh-TW
dc.title微陣列基因體比較雜合法之統計方法整合zh_TW
dc.titleAn Integration of Statistical Methods for Array-based Comparative Genomic Hybridizationen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉仁沛(Jen-Pei Liu),劉力瑜(Li-yu D. Liu)
dc.subject.keyword微陣列基因體比較雜合法,循環二元分割法,適應性權重平滑法,CGH分割法,zh_TW
dc.subject.keywordArray-based Comparative genomic hybridization,array CGH,aCGH,Circular Binary Segmentation,CBS,Adaptive weights smoothing,AWS,CGH segmentation,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved