Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31997
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡益坤(Yih-Kuen Tsay)
dc.contributor.authorWei-Lun Luen
dc.contributor.author呂偉綸zh_TW
dc.date.accessioned2021-06-13T03:27:23Z-
dc.date.available2006-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation[1] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Ismailcem Budak Arpinar, Cartic Ramakrishnan, and Amit P. Sheth. Ranking complex relationships on the semantic web. IEEE Internet Computing, 9(3):37–44, 2005.
[2] Franz Baader, Diego Calvanese, McGuinness Deborah, Daniele Nardi, and Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
[3] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept languages. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, IJCAI-91, pages 452–457, Sydney (Australia), 1991.
[4] Franz Baader, Ralf K‥usters, and Ralf Molitor. Computing least common subsumers in description logics with existential restrictions. In T. Dean, editor, Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI-99, pages 96–101. Morgan Kaufmann, 1999.
[5] Wolf-Tilo Balke and Matthias Wagner. Towards personalized selection of web services. In WWW (Alternate Paper Tracks), 2003.
[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Technical report, Scientific American, 2001.
[7] Harold Boley, Said Tabet, and Gerd Wagner. Design rationale of RuleML: A markup language for Semantic Web rules. In Proceedings of the First Semantic Web Working
Symposium (SWWS), pages 381–402, 2001.
[8] Alexander Borgida, Thomas Walsh, and Haym Hirsh. Towards measuring similarity in description logics. In Proceedings of the 2005 International Workshop on Description Logics (DL2005), Edinburgh, Scotland, UK, July 26-28, 2005, volume 147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.
[9] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik F. Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP) 1.1. Technical report, www.w3c.org, 2000.
[10] Sebastian Brandt, Ralf K‥usters, and Anni-Yasmin Turhan. Approximation and difference in description logics. In Proceedings of the Eighth International Conference on Principles and Knowledge Representation and Reasoning, pages 203–214, 2002.
[11] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF Schema. Technical report, www.w3c.org, April 2002.
[12] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks, 30(1-7):107–117, 1998.
[13] Roberto Chinnici, Martin Gudgin, Jean J. Moreau, and Sanjiva Weerawarana. Web Services Description Language (WSDL) Version 1.2. Technical report, www.w3c.org, 2002.
[14] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least common subsumers in description logics. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings of the Tenth National Conference on Artificial Intelligence, pages 754–761, Menlo Park, California, 1993. AAAI Press.
[15] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina Mongiello. Logic based approach to web services discovery and matchmaking. In Proceedings of Modeling E-services Workshop at Fifth International Conference on Electronic Commerce (ICEC 03), October 2003.
[16] Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,and Sanjiva Weerawarana. Business process execution language for Web services, version 1.0. Technical report, www.ibm.com, 2002.
[17] Fran﹐cois Goasdou’e and Marie-Christine Rousset. Compilation and approximation of conjunctive queries by concept descriptions. In Proceedings of the 2002 International Workshop on Description Logics (DL2002), Toulouse, France, April 19-21, 2002, 2002.
[18] Volker Haarslev and Ralf M‥oller. Expressive ABox reasoning with number restrictions, role hierarchies, and transitively closed roles. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000: Principles of Knowledge Representation and Reasoning, pages 273–284. Morgan Kaufmann, 2000.
[19] Ian Horrocks, Frank V. Harmelen, Peter Patel-Schneider, Tim Berners-Lee, Dan Brickley, Dan Connolly, Mike Dean, Stefan Decker, Dieter Fensel, Richard Fikes,
Pat Hayes, Jeff Heflin, Jim Hendler, Ora Lassila, Deb McGuinness, and Lynn A. Stein. DAML+OIL. Technical report, www.daml.org, 2001.
[20] Chia-Tzu Hsieh. The Traveller : A Service Combination System Based on Semantic Web Technology. Master’s thesis, Nation Taiwan University, July 2006.
[21] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, cmp-lg/9709008, 1997.
[22] Takahiro Kawamura, Jacques-Albert De Blasio, Tetsuo Hasegawa, Massimo Paolucci, and Katia P. Sycara. Public deployment of semantic service matchmaker with UDDI business registry. In International Semantic Web Conference, pages 752–766, 2004.
[23] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web technology. In Proceedings of the Twelfth International Conference on World Wide Web (WWW), pages 331–339. ACM, 2003.
[24] Dekang Lin. An information-theoretic definition of similarity. In Proc. 15th International Conf. on Machine Learning, pages 296–304. Morgan Kaufmann, San Francisco, CA, 1998.
[25] Phillip W. Lord, Robert D. Stevens, Andy Brass, and Carole A. Goble. Investigating semantic similarity measures across the gene ontology: The relationship between
sequence and annotation. Bioinformatics, 19(10):1275-1283, 2003.
[26] Chiu-Ming Lung. Approximate matching of web services with description logic reasoning.Master’s thesis, Nation Taiwan University, June 2005.
[27] Thomas Mantay. Computing least common subsumers in expressive description logics. In Australian Joint Conference on Artificial Intelligence, pages 218–230,1999.
[28] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina Mongiello.A system for principled matchmaking in an electronic marketplace. In Proceedings of
the Twelfth International Conference on World Wide Web (WWW), pages 321–330. ACM Press, 2003.
[29] Jeff Z. Pan and Ian Horrocks. OWL-E: Adding customised datatypes into OWL. Journal of Web Semantics, 4(1):29–39, 2006.
[30] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Semantic matching of web services capabilities. In Proceedings of the First International Semantic Web Conference (ISWC), volume 2342 of Lecture Notes in Computer Science, pages 333–347. Springer Verlag, 2002.
[31] Roy Rada, Mili Hafedh, Ellen Bicknell, and Maria Blettner. Development and application of a metric on semantic nets. 19:17–30, 1989.
[32] Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence,IJCAI-95, pages 448–453, 1995.
[33] Sheldon Ross. A First Course in Probability. 1976.
[34] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology Language Guide - W3C Recommendation 10 February. Technical report, www.w3c.org, 2004.
[35] Nenad Stojanovic, Rudi Studer, and Ljiljana Stojanovic. An approach for the ranking of query results in the semantic web. In International Semantic Web Conference, volume 2870 of LNCS, pages 500–516. Springer-Verlag, 2003.
[36] Katia P. Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Automated discovery, interaction and composition of semantic web services. J. Web Sem., 1(1):27–46, 2003.
[37] Amos Tversky. Features of similarity. Psychological Review.
[38] UDDI. The UDDI technical white paper. Technical report, www.uddi.org, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31997-
dc.description.abstract網路服務是用於在互聯網上的遠端的共享資源。而組合基本的網路服務可以變成複合的網路服務。服務的能力等等的服務的特微,可以被特別彰顯並記錄於服務描述檔中。而服務描述可以用於比較該服務是否合乎某種特定需求。如果用合適的知識本體語言來記錄服務描述,則電腦可以直接了解服務描述所內含的語義。則電腦可以自動地找尋並執行遠端服務。但使用者仍會面臨一個窘境-找不到合乎要求的服務。這個窘境肇因於使用者所定義的需求過於狹隘。而幸運的是,使用者通常不是要找到一個與需求完全相同的服務,而替代服務很有可能就可以滿足使用者的需求。
在本論文中,我們提出一個模糊比對的方法。這個方法可在完美的服務不存在時找尋到替代服務。在該方法中,服務和需求是利用某個特定的知識本體語言所定義的概念體所組合而成的描述。則比對服務是否滿足需求可以轉變成比較兩者之間是否存在包含的關係。為了要找到替代服務,我們利用改寫原始需求中的基元概念體為較廣義的基元概念體的方式來使需求找到更多的服務。我們提出了制定基本概念體之間相似度的計算方式,並利用相似度來找到較廣義的概念體。我們實作了一個旅行計畫系統來驗證此模糊比對的方法。在該系統中,我們以OWL-DL作為我們的知識本體語言,並利用Racer的推理能力來驗證包含關係。但限於OWL-DL的表達能力,我們無法用數字的模式表現出線段。為了解決這個問題,我們利用概念體來表達線段,並利用限定兩者之間的關係來表達兩線段在數線上的前後關係。而這個前後關係也是轉變成驗證兩者的包含關係。利用我們的模糊比對方法,旅行計畫系統可以在找不到使用者限定的服務時替使用者找到替代服務。而且每一個替代服務皆會給予一個評價值,使用者可以參考評價值選擇自己需求的服務。
zh_TW
dc.description.abstractWeb services, which are heterogeneous application accessible over the Internet, may be integrated into more sophisticated compound services. Features of a service such as its functionalities can be characterized and recorded in its service description as a basis for determining if the service satisfies some particular needs. Expressed with a suitable ontology language, service descriptions become machine-interpretable, making it possible to discover and compose services automatically. We are then faced with a situation when no perfect services can be found because the requirement is too strict. Fortunately, perfect matches may not be necessary in most cases, and the requester may be satisfied with “good enough” services. In this thesis, we propose an approximate matching scheme, which returns reasonable substitute services when no exact matches can be found. In our scheme, service descriptions and requirements are both expressions coded with concepts predefined in some ontology language, and service matching is reduced to subsumption checking. To find approximate matches, a requirement is loosened by replacing primitive concepts in the original expression with substitute concepts. Substitute concepts are selected against the similarity values derived from how many features they have in common with the original ones. Substitute concepts are also found by relation compositions which can be revealed with domain-specific inference supported by rule engines. We apply the approximate scheme in a trip planning system where service descriptions are coded with OWL-DL and subsumption checking is done by Racer. OWL-DL, which implements concrete domains with datatypes, disallows user defined datatypes and therefore concepts cannot be constrained with upper/lower bounds of concrete domains. To represent intervals in a service description, we propose two approaches to model quantitative relations where upper/lower bounds are defined with concept subsumptions and object properties, and inference problems in concrete domains such as linear inequality is translated into subsumption checking. With our approximate matching scheme, the trip planning system is able to find exactly matched or approximately matched services, and chooses among them against the ranks automatically produced by our ranking mechanism to compose his own trip.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:27:23Z (GMT). No. of bitstreams: 1
ntu-95-R93725025-1.pdf: 715710 bytes, checksum: e8e39b80eb31ff5438590ea86dc8d851 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work 5
2.1 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 UDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 SemanticWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 OWL-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 WSMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Concept Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Service Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Concept Rewriting and Approximation Rule . . . . . . . . . . . . . . . . 18
3 Preliminaries 21
3.1 Basics of Description logic . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Concrete Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Relationship Between DL and OWL . . . . . . . . . . . . . . . . . . . . . 23
3.4 Inference Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 SemanticWeb Rule Language: SWRL . . . . . . . . . . . . . . . . . . . 26
3.5.1 SWRL Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 SWRL Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 MatchingScheme 30
4.1 Service Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Quantitative Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 SystemArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 OWL Knowledge Repository . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 OntologyMerge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Concept Approximator . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.4 Matching Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.5 DL Reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.6 Rule Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.7 Rule Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Service Matching Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Idea of Approximation . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Unfolding Service Descriptions . . . . . . . . . . . . . . . . . . . . 41
4.5.4 Find Substitute Concepts . . . . . . . . . . . . . . . . . . . . . . 42
4.5.5 Construct Approximate Requests . . . . . . . . . . . . . . . . . . 44
4.5.6 Ranking Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Prototype System 49
5.1 Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 TourismDomain Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 Value Partition Ontology . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Time Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Location and Transportation Ontologies . . . . . . . . . . . . . . 56
5.2.4 Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Issues of Service Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Defining with Intervals . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 OntologyMerge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Working with the Rule Engine . . . . . . . . . . . . . . . . . . . . 60
5.4 SystemDemonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Conclusion 65
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
dc.language.isoen
dc.subject網路服務zh_TW
dc.subject知識本體zh_TW
dc.subject語義網zh_TW
dc.subject敘述性邏輯zh_TW
dc.subject模糊比對zh_TW
dc.subject語義網法則語言zh_TW
dc.subjectOntologyen
dc.subjectSWRLen
dc.subjectWeb Servicesen
dc.subjectSemantic Weben
dc.subjectDescription Logicen
dc.subjectApproximate Matchingen
dc.title運用知識本體與法則於服務描述之模糊比對zh_TW
dc.titleApproximate Matching of Service Description Using Ontologies and Rulesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊裕澤(Yuh-Jzer Joung),王柏堯(Bow-Yaw Wang)
dc.subject.keyword模糊比對,敘述性邏輯,語義網,網路服務,知識本體,語義網法則語言,zh_TW
dc.subject.keywordApproximate Matching,Description Logic,Semantic Web,Web Services,Ontology,SWRL,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
698.94 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved