Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li Lin)
dc.contributor.authorMing-Chuan Hsuen
dc.contributor.author許銘權zh_TW
dc.date.accessioned2021-06-13T03:27:14Z-
dc.date.available2009-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation[1] J. Tokuda, S. Morikawa, T. Dohi, and N. Hata, 'Motion tracking in MR-guided liver therapy by using navigator echoes and projection profile matching,' Acad Radiol, vol. 11, pp. 111-20, 2004.
[2] W. C. Dewey, D. E. Thrall, and E. L. Gillette, 'Hyperthermia and radiation--a selective thermal effect on chronically hypoxic tumor cells in vivo,' Int J Radiat Oncol Biol Phys, vol. 2, pp. 99-103, 1977.
[3] J. Overgaard, 'The current and potential role of hyperthermia in radiotherapy,' Int J Radiat Oncol Biol Phys, vol. 16, pp. 535-49, 1989.
[4] T. L.Sneed, 'Combining hyperthermia and radiation: how beneficial?,' Oncology, vol. 5, pp. 99-108, 1990.
[5] B. A. Bornstein, P. S. Zouranjian, J. L. Hansen, S. M. Fraser, L. A. Gelwan, B. A. Teicher, and G. K. Svensson, 'Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma,' Int J Radiat Oncol Biol Phys, vol. 25, pp. 79-85, 1993.
[6] W. C. Dewey, 'Arrhenius relationships from the molecule and cell to the clinic,' Int J Hyperthermia, vol. 10, pp. 457-83, 1994.
[7] T. S. Pearce J., 'Optical-thermal response of laser-irradiated tissue,' London:Plenum, pp. 561-606, 1955.
[8] S. A. Sapareto and W. C. Dewey, 'Thermal dose determination in cancer therapy,' Int J Radiat Oncol Biol Phys, vol. 10, pp. 787-800, 1984.
[9] G. J. Lynn, 'A new method for the generation and use of focused ultrasound in experimental biology,' J. Gen. Physiol., vol. 26, pp. 179-193, 1946.
[10] memo.cgu.edu.tw/Secretariat/news/47/research/research_3.htm
[11] H. Shirato, Y. Seppenwoolde, K. Kitamura, R. Onimura, and S. Shimizu, 'Intrafractional tumor motion: lung and liver,' Semin Radiat Oncol, vol. 14, pp. 10-8, 2004.
[12] E. Ebbine, 'Multiple-Focus Ultrasound Phased-Array Pattern Synthesis - Optimal Driving-Signal Distributions for Hyperthermia.,' IEEE T ULTRASON FERR, vol. 36, pp. 540-548, 1989.
[13] H. E. Cline, J. F. Schenck, K. Hynynen, R. D. Watkins, S. P. Souza, and F. A. Jolesz, 'MR-guided focused ultrasound surgery,' J Comput Assist Tomogr, vol. 16, pp. 956-65, 1992.
[14] K. Hynynen, C. A. Damianou, V. Colucci, E. Unger, H. H. Cline, and F. A. Jolesz, 'MR monitoring of focused ultrasonic surgery of renal cortex: experimental and simulation studies,' J Magn Reson Imaging, vol. 5, pp. 259-66, 1995.
[15] M. Pernot, M. Tanter, and M. Fink, '3-D real-time motion correction in high-intensity focused ultrasound therapy,' Ultrasound Med Biol, vol. 30, pp. 1239-49, 2004.
[16] J. Tokuda, 'Integration of projection profile matching into clinical MR scanner system for real-time organ tracking and image registration,' In Proc. 6th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2003,LNCS 2879,, pp. 311-318, 2003.
[17] H. Wu, G. C. Sharp, B. Salzberg, D. Kaeli, H. Shirato, and S. B. Jiang, 'A finite state model for respiratory motion analysis in image guided radiation therapy,' Phys Med Biol, vol. 49, pp. 5357-72, 2004.
[18] S. S. Korreman, A. N. Pedersen, T. J. Nottrup, L. Specht, and H. Nystrom, 'Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique,' Radiother Oncol, vol. 76, pp. 311-8, 2005.
[19] K. Kitamura, H. Shirato, S. Shimizu, K. Miyasaka, T. Demura, N. Shinohara, and T. Harabayashi, 'Real-time tumor-tracking radiotherapy combined with neoadjuvant hormonal therapy for prostate cancer,' Nippon Rinsho, vol. 58 Suppl, pp. 326-9, 2000.
[20] C. Bohris, J. W. Jenne, R. Rastert, I. Simiantonakis, G. Brix, J. Spoo, M. Hlavac, R. Nemeth, P. E. Huber, and J. Debus, 'MR monitoring of focused ultrasound surgery in a breast tissue model in vivo,' Magn Reson Imaging, vol. 19, pp. 167-75, 2001.
[21] J. H. Demmink, P. J. Helders, H. Hobaek, and C. Enwemeka, 'The variation of heating depth with therapeutic ultrasound frequency in physiotherapy,' Ultrasound Med Biol, vol. 29, pp. 113-8, 2003.
[22] Pennes, 'Analysis of tissue and arterial blood temperatures in the resting human forearm,' J. Appl. Phys, vol. 1, pp. 93-122, 1948.
[23] http://ej.rsna.org/ej3/0079-98.fin/mirror_images/fig_10.htm.
[24] G. ter Haar, 'Basic physics of therapeutic ultrasound,' Physiotherapy, vol. 64, pp. 100-3, 1978.
[25] S. A. Goss, L. A. Frizzell, and F. Dunn, 'Frequency dependence of ultrasonic absorption in mammalian testis,' J Acoust Soc Am, vol. 63, pp. 1226-9, 1978.
[26] S. A. Goss and F. Dunn, 'Ultrasonics propagation properties of collagen,' Phys Med Biol, vol. 25, pp. 827-37, 1980.
[27] P. N. Wells, 'Ultrasonics in medicine and biology,' Phys Med Biol, vol. 22, pp. 629-69, 1977.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31993-
dc.description.abstract超音波熱治療手術為一種非侵入式的治療策略,利用超音波屬於機械波,於傳播介質當中的震動與聚焦造成組織溫度的升高。以超音波熱治療之過程,必須精確地將熱劑量送至異常組織以避免造成對正常組織的傷害。為了治療過程能夠精確地掌握,近年來,許多論文探討以核磁共振影像得知異常組織的位置,達到精確治療的目的,亦經由核磁共振的資訊引導超音波熱治療,觀察治療標定區域的溫度,掌握患部溫度上升情況,以衡量治療過程中患部的熱劑量與範圍。此外對於具移動狀態的治療區域,提供有效的資訊。
針對胸腔與腹腔的腫瘤來說,由於呼吸運動所引起的橫膈膜運動,會帶動著內臟器官做立體空間的運動。而因為治療區域的運動,會導致超音波無法準確聚焦在目標區域上。對於此項議題,我們可以利用區間窗口型加熱治療策略。若能根據影像系統擷取治療區域運動軌跡之後,對數個軌跡進行評估,得知能量分布情形,選定最適合治療的區間窗口 (Gating Windows),設計治療策略,期望利用軌跡所成之能量分布與治療硬體的配置,來達到治療的目的。
本論文中,利用馬達帶動平台運動,模擬由呼吸所引起的內臟運動軌跡,透過固定超音波換能器之平台調整至所要放置之位置,再利用兩個相同的超音波換能器對目標物作加熱。而於論文後得知於特定情況下可使治療效果達到最佳,並且經由分析軌跡資料,可掌握燒灼出現位置。利用現有設備,架構簡單的系統架構,模擬預期將得到的結果,並了解實務上將會面對遇到的問題,以利克服日後系統整合上的困難。
zh_TW
dc.description.abstractHigh Intensity Focused Ultrasound(HIFU) is a non-invasive thermal therapy surgery by using a focused ultrasound transducer to transfer the acoustic power to the tumor region. During the process of thermal therapy, it have to transfer the power precisely to avoid injuring the normal tissue. Image guidance during therapy offers the feasibility for precise thermal dose delivery to a tumor region. MR-Image offers not only the temperature field in the tissue but also some other information, such as, blood perfusion and a tumor motion…etc.
Respiratory induces the diaphragm motion and the motion will result in the sequential motion of the surrounding organs and tissues. Focused ultrasound for liver tumor thermal therapy implies a risk of normal organ during the heating. In this study, we use the gating window strategy to design the treatment plan by analyzing the respiratory motion data during heating the tumor. The main system consists a servo-motor, a 256-channels phased array generator and two 80-elements ultrasound phased array. Tissue phantom on a movable plane controlled by a servo-motor was used to simulate the organ motion induced by respiration. The thermal dose distribution has been studied for the system in many conditions. The maximum temperature and maximum thermal dose location would be predicted by calculating the absorbed energy distribution.
After this study, we could got a better thermal dose distribution if we rotate the phased array transducer 90 deg. in X-Y plane and the thermal lesion location could be predicted by analyzing the respiratory data. It established a simple system to know some difficulties of gating window strategy in reality and we obtained some experiment results by using this simple system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:27:14Z (GMT). No. of bitstreams: 1
ntu-95-R93548039-1.pdf: 3345248 bytes, checksum: 5e3bcfae00de1eef0354df467e6d3f6d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 緒論 1
1.1 超音波熱治療概述 2
1.1.1 高溫熱治療發展背景 2
1.1.2 高溫熱治療種類概述 4
1.2 腫瘤具移動狀態下之超音波熱治療 6
1.2.1 具移動狀態下的腫瘤 6
1.2.2 超音波熱治療之掃描方式 7
1.2.3 核磁共振掃描 (Magnetic Resonance Imaging , MRI) 8
1.2.4 核磁共振所得呼吸軌跡 9
1.3 輻射治療於週期性腫瘤運動之GATING 治療策略 11
1.3.1 輻射治療之 Gating 治療策略 12
1.4 研究動機 14
1.5 研究目的 15
第二章 超音波熱治療理論分析 17
2.1 雷利—薩瑪菲爾德繞射積分式 18
2.2 焦點控制 20
2.3 溫度場與熱劑量場理論分析 22
2.4 考慮運動狀態與靜止狀態下熱治療之改變因素 25
2.4.1 具移動狀態之治療區域 – 都卜勒效應 25
2.4.2 具移動狀態之換能器於組織溫升效果 26
2.5 運動狀態腫瘤之GATING 治療策略於超音波熱治療 29
2.6 小結 32
第三章 應用GATING 治療策略於超音波熱治療 33
3.1 系統設計與模擬參數 33
3.2 模擬配置與結果 41
3.2.1 規則性軌跡型態之Free Breathing法模擬結果 43
3.2.2 改變超音波換能器配置型態之Free Breathing法模擬結果 44
3.2.3 改變驅動能量型態之Free Breathing法模擬結果 47
3.2.4 非規則性軌跡型態下之Free Breathing法模擬結果 53
3.2.5 選取不同加熱區間窗口之模擬結果 59
3.3 FREE BREATHING GATING WINDOW實驗配置與結果 64
3.3.1 實驗配置 65
3.3.2 實驗結果 66
3.4 小結 71
第四章 結論與討論 72
參考文獻 77
dc.language.isozh-TW
dc.subject相位陣列換能器zh_TW
dc.subject超音波熱治療zh_TW
dc.subject區間窗口治療策略zh_TW
dc.subject腫瘤呼吸移動zh_TW
dc.subjectThermal therapy phased array transduceren
dc.subjectHigh Intensity Focused Ultrasounden
dc.subjectRespiratory motionen
dc.subjectGating window strategyen
dc.title區間窗口治療策略應用於高強度聚焦超音波肝腫瘤熱治療zh_TW
dc.titleLiver Tumor Thermal Therapy by Using High Intensity Focused Ultrasound with Gating Window Strategy for Respiratory Motionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳永耀
dc.contributor.oralexamcommittee陳文翔,江惠華
dc.subject.keyword超音波熱治療,區間窗口治療策略,相位陣列換能器,腫瘤呼吸移動,zh_TW
dc.subject.keywordHigh Intensity Focused Ultrasound,Gating window strategy,Thermal therapy phased array transducer,Respiratory motion,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2006-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved