Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31866
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorChia-Ju Yuen
dc.contributor.author余佳茹zh_TW
dc.date.accessioned2021-06-13T03:22:41Z-
dc.date.available2010-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationS. C. Jain, M. Willander, J. Narayan, and R.V. Overstraeten, J. Appl. Phys. 87, 965 (2000).
Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys. 42, 2549(2003).
T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241(1986).
V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1(2002).
J. Wu, W. Walukiewicz, K. M. Yu, J. W. Auger Ⅲ, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. B 66, R201403(2002).
C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J.J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 123, 2791(2001).
J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455(2001).
Strite S and Morkoc H, J. Vac. Sci. Technol. B 10, 237(1992).
O’Leary S K, Foutz B E, Shur M S, Bhapkar UV and Eastman L F, J. Appl. Phys. 83, 26(1998).
Harima H, J. Phys.: Condens. Matter 14 R967(2002).
Chandrasekhar D, Smith D J, Strite S, Lin M E and Morkoc H, J. Cryst. Growth 152, 35(1995).
S. N. Mohammad and H. Morkoc, Prog. Quantum Electron. 20, 361(1996).
V W L Chin, L Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365(1994).
Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio yamamoto, Appl. Phys. Lett. 94, 2779(2003)
A. G. Thompson, R. A. Stall and B. Kroll, Semiconductor Intern. 172 (1994).
(a) H. M. Manasevit, Appl. Phys. Lett. 116, 1725(1969). (b) H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. 12, 156 (1968).
Perkowitz, ”Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy”.
S. Z. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969)
Ming-Shien Hu, Wei-Ming Wang, Tzung T. Chen, Lu-Sheng Hong, Chun-Wei Chen, Chia-Chun Chen,Yang-Fang Chen, Kuei-Hsien Chen, and Li-Chyong Chen, Adv. Func. Mater. 16, 537(2005).
S. Jin, Y. Zheng, and A. Li, J. Appl. Phys. 82, 3870 (1997).
Q. Liu, S. Derksen, A. Lindner, F. Scheffer, W. Prost, and F. -J. Tegude, J. Appl. Phys. 77, 1154 (1995).
F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958(1997).
S. P. Fu and Y. F. Chen, Appl. Phys. Lett. 85, 1523(2004).
B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69, 115216 (2004).
J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, S. X. Li, E. E. Haller, Hai Lu, and William J. Schaff, J. Appl. Phys. 94, 4457(2003).
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675(2003).
H. C. Casey, Jr., and F. Stern, J. Appl. Phys. 47, 631(1976).
I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, and W.J. Schaff, Phys. Rev. Lett. 92, 036804(2004).
I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, Hai Lu, W. J. Schaff, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 69, 201307(R)(2004).
C. H. Shen, H. Y. Chen, H. W. Lin, S. Gwo, A. A. Klochikhin, and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104(2006).
Perkowitz, ”Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy”.
C. Kittel, “Introduction to Solid State Physics”.
X. Tan, J. Wojcik, and P. Mascher, J. Vac. Sci. Technol. A, 22(4), 1115(2004).
P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice-Hall Inc., New Jersey, 1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31866-
dc.description.abstract本論文中研究氮化銦一維結構尺度上光學、電性與光電導的效應。使用有機金屬化學沈積技術成長具有單晶烏采結構氮化銦奈米結構。接著製作單根氮化銦奈米元件。光學量測中,20K下氮化銦發光位置約為0.84 eV。溫度由20K到100K時光致發光位置開始有異常藍移的現象接著升至室溫時由於一般的能隙收縮造成紅移。此一光致發光機制為能帶與能階間復合機制與電子在表面上累積有關。氮化銦一維奈米結構的高載子濃度(2.7x1019 1.65x1020 cm-3)可由傅立葉轉換紅外光譜儀證實。在電性量測上,所有單根氮化銦奈米元件的導電率在50到8000 -1cm-1之間。變溫電導量測中顯示其具有類金屬的傳輸特性。光電導量測中對其尺寸的影響,我們發現其最大的光電流反應可以達到1000 A/W,這是氮化銦中第一次被發現的現象。當氮化銦奈米帶的直徑改變由60至230 nm,光電流有非常明顯的增加。由於一維結構的尺寸效應形成明顯的表面電子累積造成較短的載子生命期和較低的載子移動率,使得光電流對尺寸有明顯的效應。zh_TW
dc.description.abstractWe have studied optical, transport, and photoelectric properties on dimensionality of one-dimensional (1D) nanostructure of InN. Single-crystalline InN nanobelts with wurtize structure have been synthesized using metalorganic chemical vapor deposition (MOCVD). The fabrication of single nanobelt device has been also demonstrated. For optical measurement, we found that the photoluminescence (PL) peak position of the samples is observed at around 0.84 eV at 20 K. In addition, the PL peak position reveals anomalous blueshift as temperature increases from 20K to 100K and then follows redshift from 100K to 300K due to normal bandgap shrinkage. The PL emission mechanism in InN nanobelts can be explained by the combination of the model of free-to-bound recombination and electron surface accumulation. The high carrier concentration of InN nanobelts in the range of 2.7x1019 1.65x1020 cm-3 has been further manifested by the study of plasma edge absorption in the Fourier Transform Infrared (FTIR) examination. For electrical measurement, the overall conductivity of the nanobelts is in the range of 50 8000 -1cm-1. The temperature dependence of dark conductivity has indicated the metallic transport behavior of the single InN nanobelt. Size-dependent hotoconductivity (PC) has been observed on the InN nanobelts and the maximal photocurrent responsivity reaching to 1000 A/W has been demonstrated for the first time. It is found that the responsivity has increased significantly as nanobelt size increases from 60 to 230 nm. The size-effect on the PC performance could be explained by the electron surface accumulation in the size-confined 1D nanostructure of InN giving rise to shorter lifetime and lower mobility of carrier.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:22:41Z (GMT). No. of bitstreams: 1
ntu-95-R93527018-1.pdf: 3332017 bytes, checksum: 20e8378070d4fc4a7f6a926eb9966b5d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Introductory Remarks 1
1.2 Important Properties of InN 3
Chapter 2 Fabrication and Characterization of InN Nanostructures 7
2.1 Experimental System 7
2.1.1 Metalorganic Chemical Vapor Deposition System(MOCVD) 7
2.1.2 DC Sputtering 9
2.1.3 E-gun Evaporator 10
2.2 Experimental Steps 10
2.2.1 Growth Processes of InN Nanostructure 10
2.2.2 Fabrication of single InN Nanobelt Device 10
2.3.1 Scanning Electron Microscopy (SEM) 11
2.3.2 Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Analysis (EDS) 12
2.3.4 X-ray Diffraction (XRD) 13
2.3.5 Photoluminescence Spectroscopy (PL) 13
2.3.6 Fourier Transform Infrared (FTIR) Measurements 17
2.3.7 Photoconductivity Measurement and Temperature-dependent Electrical Measurement 18
Chapter 3 Analysis and Discussion 28
3.1 Structure Analyze of InN Nanobelts 28
3.1.1 SEM Characterization 28
3.1.2 XRD Characterization 28
3.1.4 TEM Characterization 28
3.2 Optical Properties 29
3.2.1 Power-dependence of PL Mechanism 29
3.2.2 Temperature-dependence of PL Mechanism 32
3.2.3 Estimation of Carrier Concentration by FTIR Measurements 34
3.3 Electronic and Photoelectronic Properties 38
3.3.1 Two Terminal Measurement of Single InN Nanobelt and its Temperature -dependence 38
3.3.2 Size-dependent Photoconductivity of Single InN Nanobelt 38
Chapter 4 Conclusion 41
Reference 57
dc.language.isoen
dc.subject光導zh_TW
dc.subject氮化銦zh_TW
dc.subject表面電子累積zh_TW
dc.subject光致發光zh_TW
dc.subjectphotoconductivityen
dc.subjectindium nitrideen
dc.subjectsurface accumulationen
dc.subjectphotoluminescenceen
dc.title一維奈米結構氮化銦光電特性研究zh_TW
dc.titleElectro-Optical Properties of Nano-structured Indium Nitrideen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor林麗瓊(Li-Chyong Chen),陳貴賢(Kuei-Hsien Chen)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword氮化銦,表面電子累積,光致發光,光導,zh_TW
dc.subject.keywordindium nitride,surface accumulation,photoluminescence,photoconductivity,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved