請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31853
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張所鋐 | |
dc.contributor.author | Yong-Siang Lin | en |
dc.contributor.author | 林永祥 | zh_TW |
dc.date.accessioned | 2021-06-13T03:22:15Z | - |
dc.date.available | 2008-08-01 | |
dc.date.copyright | 2006-08-01 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-28 | |
dc.identifier.citation | [1] H. Hertz, J. Reine and Angewandte Mathematik, Vol. 92, 1882.
[2] J. Boussinesq, Applications des Potentiels a l’etude de l’equilibre et du movement des solides elastiques, 1885. [3] D Tabor, “A simple theory of static and dynamic hardness,” Proc. R. Soc. A192, pp. 247-273, 1948. [4] I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Engng. Sci., Vol. 3, pp. 47-57, 1965. [5] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992. [6] G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., Vol. 7, No. 3, pp. 613-617, 1992. [7] Giannakopoulos, A.E., Larson, P.-L., Soderlund, E., Rowcliffe, D.J., Vestergaard, R., “Analysis of Vickers indentation,” Int. J. Solids Structures, Vol. 31, No. 19, pp.2679-2708, 1994. [8] E. P. S. Tan and C. T. Lim , “Physical properties of a single polymeric nanofiber,” Appl. Phys. Lett., Vol. 84, No. 9, pp.1603-1605, 2004. [9] X. Li, H. Gao, C. J. Murphy, and K. K. Caswell, “Nanoindentation of silver nanowires,” Nano Lett., Vol. 3, No. 11, pp. 1495-1498, 2003. [10] Y. Choi, S. Suresh, “Nanoindentation of patterned metal lines on a Si substrate,” Scr. Mater., Vol. 48, pp. 249-254, 2003. [11] S. Cuenot, S. Demoustier-Champagne, B. Nysten, “Elastic modulus of polypyrrole nanotubes,” Phys. Rev. Lett., Vol. 85, No. 8, pp. 1690-1693, 2000. [12] S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, “Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy,” J. Appl. Phys., Vol. 93, No. 9, pp. 5650-5655, 2003. [13] T. H. Fang, W. J. Chang, “Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning probe microscopy,” Physica B, Vol. 352, pp. 190-199, 2004. [14] S. X. Mao, M. Zhao, Z. L. Wang, “Nanoscale mechanical behavior of individual semiconducting nanobelts,” Appl. Phys. Lett., Vol. 83, No. 5, pp. 993-995, 2003. [15] E. Tan, C. T. Lim, “Nanoindentation study of nanofiber,” Appl. Phys. Lett., Vol. 87, pp. 123106, 2005. [16] 陳麒堯, “以實驗法測定鍺奈米線線徑與機械性質之關係,” 國立台灣大學機械工程研究所碩士論文, 中華民國九十四年七月. [17] A. K. Bhattacharya, W. D. Nix, ”Finite element simulation of indentation experiments,” Int. J. Solids Structures, Vol. 24, No. 9, pp. 881-891, 1988. [18] H. Pelletier, J. Krier, A. Cornet, P. Mille, “Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials,” Thin Solid Films, Vol. 379, pp.147-155, 2000. [19] M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, “Simulation of Berkovich nanoindentation experiments on thin films using finite element method,” Thin Solid Films, Vol. 312, pp. 240-248, 1998. [20] N. Yu, A. A. Polycarpou, T. F. Conry, ”Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation,” Thin Solid Films, Vol. 450, pp. 295-303,2004. [21] J. M. Antunes, L. F. Menezes, J. V. Fernandes, “Three-dimensional numerical simulation of Vickers indentation tests,” Int. J. Solids Structures, Vol. 43, pp 784-806,2006. [22] J. D. Bressan, A. Tramontin, C. Rosa, “Modeling of nanoindentation of bulk and thin film by finite element method,” Wear, Vol. 258, pp.115-122, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31853 | - |
dc.description.abstract | 在新興的奈米科技領域之中,奈米材料的製造方法以及結構已經被廣為研究;想要利用各種奈米材料來做應用,勢必要先了解奈米材料的各種特性,其中又以機械性質為最重要的性質之一。而對於奈米材料機械性質的測定,已經有許多方法被提出,奈米壓痕技術就是近年來最被廣泛應用的一種。
奈米壓痕技術可以測定薄膜材料的模數、硬度等機械性質,近年來更被應用在奈米線的機械性質測定上。但由於奈米壓痕技術在理論上只能被用在測定薄膜材料或塊材的機械性質,所以要利用奈米壓痕技術測定線材的機械性質,勢必會產生誤差。本文就利用有限元素軟體,模擬並分析壓印線材時材料的行為反應,從中找尋誤差的來源並修正。 由於利用奈米壓痕技術測定奈米線材的機械性質日益重要,但舊有的理論方法並無法完全符合需求,故本文的結果將能使奈米線、奈米管等奈米材料的機械性質測定更為正確,也對新式奈米材料的研究做出貢獻。 | zh_TW |
dc.description.abstract | In the emerging field of nanotechnology, the manufacture method and the structure of nano-materials has been studied widely. The properties of nano-materials are very important to the research of nano-materials. In particular, the mechanical properties are the most important properties in the application of nano-materials. Although many methods of mechanical properties measurement were proposed, nanoindentation test is the most popular method in the recent years.
Nanoindentation test has been extensively applied to measure the elastic modulus and hardness of thin film materials or bulk materials. However, the deviation of predicted contact area could occur when indentation test is applied to wire materials. The reason is that the boundary condition of wire materials is different from bulk materials. In this study, we demonstrate a method to evaluate these errors by using finite element method to analyze the indentation behavior of wire materials and correct the error. Since the mechanical properties measurement of nanowires and nanotubes become more and more important. Previous theory can not completely accord with the demands. The result of this paper makes the measurement method more correct, and also makes the contribution to the study of new nano-materials. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:22:15Z (GMT). No. of bitstreams: 1 ntu-95-R93522614-1.pdf: 9309005 bytes, checksum: 3f8682e85ad0989cefe40ff9cb27facb (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 誌謝
中文摘要.........................................................................................................I 英文摘要........................................................................................................II 目錄..............................................................................................................IV 圖例目錄......................................................................................................VI 表格目錄......................................................................................................XI 第一章 緒論.................................................................................................1 1.1 前言................................................................................................1 1.2 研究動機及目標............................................................................3 第二章 文獻回顧........................................................................................5 2.1 奈米壓痕技術................................................................................5 2.2 線材彈性模數的測定..................................................................11 2.3 奈米壓痕量測的有限元素分析..................................................17 第三章 模型驗證.......................................................................................21 3.1 二維軸對稱模型..........................................................................21 3.2 三維模型......................................................................................28 第四章 模擬結果與討論...........................................................................37 4.1 壓印子尖端半徑效應..................................................................37 4.2 壓印深度對彈性模數的影響......................................................39 4.3 線徑對彈性模數的影響..............................................................55 第五章 結論與未來展望...........................................................................99 5.1 結論..............................................................................................99 5.2 未來展望....................................................................................101 Reference....................................................................................................102 | |
dc.language.iso | zh-TW | |
dc.title | 奈米壓痕技術應用於線材機械性質測定之有限元素分析 | zh_TW |
dc.title | Finite Element Analysis on the Nanoindentation of Wire Material Properties | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張家歐,施文彬 | |
dc.subject.keyword | 奈米壓痕,彈性模數,奈米線,有限元素分析, | zh_TW |
dc.subject.keyword | Nano Indentation,Elastic Modulus,Nanowire,Finite Element Analysis, | en |
dc.relation.page | 104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 9.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。