請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31825完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾添東 | |
| dc.contributor.author | Wei-Sheng Syu | en |
| dc.contributor.author | 徐偉盛 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:21:21Z | - |
| dc.date.available | 2006-07-30 | |
| dc.date.copyright | 2006-07-30 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | [1]B. Curless, “New methods for surface reconstruction from range images,” Ph.D dissertation, Stanford University, 1997.
[2]范光照、章明、姚宏宗、許智欽、鄭正元, 逆向工程技術及應用, 高立圖書有限公司, 2003. [3]J. Tajima, “Rainbow range finder principle for ranger data acquisition,” IEEE Workshop on Industrial Applications of Machine Vision and Machine Intelligence, pp.381-386, 1987. [4]J. Tajima, and M. Iwakawa, “3-D data acquisition by rainbow range finder,” International Conference on Pattern Recognition, Vol.1, pp.309-313, 1990. [5]C. Wust, and D. W. Capson, “Surface profile measurement using color fringe projection,” Machine Vision and Applications, Vol.4, No.3, pp.193-203, 1991. [6]Z. J. Geng, “Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems,” Optical Engineering, Vol.35, No.2, pp.376-383, 1996. [7]E. Schubert, “Fast 3D object recognition using multiple color coded illumination,” International Conference on Acoustics, Speech, and Signal Processing, Vol.4, pp.3057-3060, 1997. [8]S. Kakunai, T.Sakamoto, and K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Applied Optics, Vol.38, No.13, pp.2824-2828, 1999. [9]W. Liu, Z. Wang, G. Mu, and Z. Fang, “Color-coded projection grating method for shape measurement with a single exposure,” Applied Optics, Vol.39, No.20, pp.3504-3508, 2000. [10]M. S. Jeong, and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Optical Engineering, Vol.41, No.8, pp.1912-1917, 2002. [11]L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi-pass dynamic programming,” Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), pp.24-36, 2002. [12]O. A. Skydan, M. J. Lalor, and D. R. Burton, “Technique for phase measurement and surface reconstruction by use of colored structured light,” Applied Optics, Vol.41, No.29, pp.6104-6117, 2002. [13]K. P. Proll, J. M. Nivet, C. Voland, and H. J. Tiziani, “Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three-channel technique,” Applied Optics, Vol.41, No.1, pp.130-135, 2002. [14]P. S. Huang, Q. J. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Applied Optics, Vol.41, No.22, pp.4503-4509, 2002. [15]P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Optical Engineering, Vol.42, No.1, pp.163-168, 2003. [16]J. Pan, P. S. Huang, S. Zhang, and F. P. Chiang, “Color N-ary gray code for 3-D shape measurement,” 12th International Conference on Experimental Mechanics (ICEM12), 2004. [17]J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Optical Engineering, Vol.44, No.2, pp.023606-1-023606-9, 2005. [18]D. P. Towers, T. R. Judge, and P J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Optics and Laser in Engineering, Vol.14, pp.239-281, 1991. [19]K. J. Gasvik, “Optical metrology,” John Wiley & Sons, 1995. [20]Malacara, “Optical shop testing,” John Wiley & Sons, 1992. [21]W. W. Macy, “Two-dimensional fringe-pattern analysis,” Applied Optics, Vol.22, pp.3898-3901, 1983. [22]蔡怡庭, 光學相位量測暨影像處理技術在電子構裝之應用, 國立台灣大學應用力學研究所碩士論文, 2000. [23]H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Optical Engineering, Vol.44, No.3, pp.033603-1-033603-9, 2005. [24]J. Pan, P. S. Huang, and F. P. Chiang, “Color phase-shifting method for three-dimensional shape measurement,” Optical Engineering, Vol.45, No.1, pp.013602-1-013602-9, 2006. [25]S. Zhang, “High-speed 3-D shape measurement based on digital fringe projection technique,” Ph.D dissertation, Stony Brook, 2003. [26]S. Zhang, and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” SPIE, Vol.6000, pp.60000E-1-60000E-10, 2005. [27]P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Optical Engineering, Vol.38, No.6, pp.1065-1071, 1999. [28]L. Jiang, S. Wu, D. Wu, E. Ong, and S. Rahardja, “3D shape modeling by color phase stepping light projection,” IEEE ICME 2003, Vol.2, pp.97-100, 2003. [29]G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti, and M. Tesauro, “Global and local phase-unwrapping techniques: a comparison,” J. Opt. Soc. Am. A, Vol.14, No.10, pp.2702-2708, 1997. [30]Y. Lu, X. Wang, and G. He, “Phase unwrapping based on branch cut placing and reliability ordering,” Optical Engineering, Vol.44, No.5, pp.055601-1-055601-9, 2005. [31]M. A. Herraez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Applied Optics, Vol.41, No.35, pp.7437-7444, 2002. [32]R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Science, Vol.23, pp.713-720, 1988. [33]J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Applied Optics, Vol.28, No.15, pp.3268-3270, 1989. [34]J. M. Huntley, “Three-dimensional noise-immune phase unwrapping algorithm,” Applied Optics, Vol.40, No.23, pp.3901-3908, 2001. [35]R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Applied Optics, Vol.34, No.5, pp.781-789, 1995. [36]H. A. Zebker, and Y. Lu, “Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms,” J. Opt. Soc. Am. A, Vol.15, No.3, pp.586-598, 1998. [37]D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Applied Optics, Vol.30, No.25, pp.3627-3632, 1991. [38]J. A. Quiroga, A. Gonza´lez-Cano, and E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Applied Optics, Vol.34, No.14, pp.2560-2563, 1995. [39]W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Transactions on Geoscience and Remote Sensing, Vol.37, No.1, pp.124-134, 1999. [40]T. J. Flynn, “Consistent 2-D phase unwrapping guided by a quality map,” IEEE Transactions on Geoscience and Remote Sensing, pp.2057-2059, 1996. [41]J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Applied Optics, Vol.34, No.28, pp.5100-5108, 1995. [42]C. S. Chua, and R. Jarvis, “Point signatures: a new representation for 3D object recognition,” International Journal of Computer Vision, Vol.25, No.1, pp.63-85, 1997. [43]R. Benjemaa, and F. Schmitt, “Fast global registration of 3D sampled surfaces using a multi-z-buffer technique,” International Conference on 3-D Digital Imaging and Modeling, pp.113-120, 1997. [44]H. Hügli, and C. Schütz, “Geometric matching of 3D Objects: assessing the range of successful initial configurations,” International Conference on 3-D Digital Imaging and Modeling, pp.101-106, 1997. [45]C. Schütz, T. Jost, and H. Hügli, “Multi-feature matching algorithm for free-form 3D surface registration,” International Conference on Pattern Recognition, Vol.2, pp.982-984, 1998. [46]K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.9, No.5, pp.587-700, 1987. [47]H. T. Yau, C. Y. Chen, and R. G. Wilhelm,“Registration and integration of multiple laser scanned data for reverse engineering of complex 3D models,” International Journal of Production Research, Vol.38, No.2, pp.269-285, 2000. [48]P. J. Besl, and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.14, No.2, pp.239-256, 1992. [49]T. Masuda, and N. Yokoya, “A robust method for registration and segmentation of multiple range images,” Computer Vision and Image Understanding, Vol.61, No.3, pp.295-307, 1995. [50]S. Rusinkiewicz, and M. Levoy, “Efficient variants of the ICP algorithm,” International Conference on 3D Digital Imaging and Modeling, 2001. [51]L. Zagorchev, and A. Goshtasby, “A mechanism for range image integration without image registration,” 3-D Digital Imaging and Modeling (3DIM), pp.126-133, 2005. [52]S. S. Parasnis, “Four point calibration and a comparison of optical modeling and neural networks for robot guidance,” Master of Science thesis, University of Cincinnati, 1999. [53]P. Hebert, “A self-referenced hand-held range sensor,” 3-D Digital Imaging and Modeling (3DIM), pp.5-12, 2001. [54]W. Niem, and J. Wingbermuhle, “Automatic reconstruction of 3D objects using a mobile monoscopic camera,” 3-D Digital Imaging and Modeling (3DIM), pp.173-180, 1997. [55]R. Sitnik, M. Kujawiska, and Jerzy Wonicki, “Digital fringe projection system for large-volume 360-deg shape measurement,” Optical Engineering, Vol. 41, Issue 2, pp.443-449, 2002. [56]L. C. Chen, and C. C. Liao, “Calibration of 3D surface profilometry using digital fringe projection,” Measurement Science and Technology, Vol.16, No.8, pp.1554-1566, 2005. [57]黃文昭, 三維外形量測之非線性數位條紋誤差校正, 國立臺灣大學機械工程學研究所碩士論文, 2006. [58]張振龍, 360度立體快速量測系統與寬頻之應用, 國立臺灣大學機械工程學研究所碩士論文, 2001. [59]J. Heikkila, O. Silven, “A Four-step camera calibration procedure with implicit image correction,” Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1106-1112, 1997. [60]T. Masuda, K. Sakaue, and N. Yokoya, “Registration and integration of multiple range images for 3-D model construction,” International Conference on Pattern Recognition, Vol.1, No.1, pp.879-885, 1996. [61]J. Y. Lai, W. D. Ueng, and C. Y. Yao, “Registration and data merging for multiple sets of scan data,” The International Journal of Advanced Manufacturing Technology, Vol.15, pp.54-63, 1999. [62]M. Soucy, and D. Laurendeau, “A general surface approach to the integration of a set of range views,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.17, No.4, pp.344-358, 1995. [63]G. Turk, and M. Levoy, “Zippered polygon meshes from range images,” Annual Conference Series on Computer Graphics, pp.311-318, 1994. [64]陳俊諺, 利用3D多重掃瞄資料建構多面體架構之實體模型, 國立中正大學機械工程研究所碩士論文, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31825 | - |
| dc.description.abstract | 本論文提出一種N步彩色相位移法用以量測物體的三維外形。首先設計彩色條紋圖樣,並使用投影機投射至物體表面。使用兩台數位相機拍攝物體表面上的扭曲條紋圖樣,並從拍攝的彩色影像中獲得每個像素之RGB亮度值。以得到的RGB亮度值,經由相位移法計算所有像素的相位值。同時以相位誤差查詢表、紅綠藍查詢表修正相位誤差。然後使用相位重建法將相位值轉換為物體表面的高度值。相位重建的步驟包含分支切割線演算法與影像品質導引演算法,以這些演算法改善外形重建之品質。再以資料對位與整合統一從兩台相機獲得的三維座標資料點。最後,本文發展一套結合相位移步驟、相位展開步驟、資料對位、資料整合的整合程式。利用此程式,測試數個量測範例。由量測成果可證實提出之方法可以有效地降低量測誤差。 | zh_TW |
| dc.description.abstract | This thesis proposes a N-step color phase-shifting method for measuring 3D shape of objects. Firstly, color fringe patterns are designed and projected onto the object surface by a projector. Distorted fringe patterns on the object surface are captured by two digital cameras, and intensities of each pixel in the red, green and blue channels are obtained from the captured color images. Phase values of all pixels are calculated by the phase-shifting method from the obtained RGB intensities. At the same time, phase errors are also corrected by using a phase error look-up-table and a RGB look-up-table. Then, the phase-unwrapping technique is applied to convert phase values to the height of the object surface. In the phase-unwrapping process, both the branch cut algorithm and the quality-guided algorithm are included to improve the quality of shape reconstruction. Data registration and integration are performed to unify 3D data points obtained from two cameras. Finally, an integrated program is developed by combing phase-shifting process, phase-unwrapping process, data registration, and data integration. With the developed program, several measurement examples are investigated. From the measurement results, it shows that the proposed method can reduce measurement errors effectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:21:21Z (GMT). No. of bitstreams: 1 ntu-95-R93522601-1.pdf: 12669814 bytes, checksum: ababcc32a4558c8ae7cc4d851020d460 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 8 1.4 研究方法 8 1.5 論文大綱 9 第二章 投射條紋法研究原理 11 2.1 投射條紋與高度之關係 11 2.2 結構光法 14 2.3 相位移法 15 2.3.1 相位移法介紹 16 2.3.2 投射黑白條紋進行相位移法 17 2.3.3 投射彩色條紋進行相位移法 19 2.4 相位誤差補償 21 第三章 投射彩色條紋進行N步相位移法 25 3.1 投射彩色條紋進行N步相位移法 25 3.1.1 投射彩色條紋進行六步相位移法 27 3.1.2 投射彩色條紋進行九步相位移法 27 3.1.3 投射彩色條紋進行十二步相位移法 28 3.1.4 投射彩色條紋進行十五步相位移法 29 3.2 相位誤差分析 31 第四章 重建三維外形之步驟 35 4.1 彩色結構光之相位誤差修正 35 4.1.1 紅綠藍查詢表 35 4.1.2 不平衡效應補償 37 4.1.3 耦合效應補償 38 4.2 相位重建 40 4.2.1 相位重建演算法 40 4.2.2 分支切割線演算法 42 4.2.3 影像品質導引演算法 46 4.3 相位轉換高度 47 4.4 資料點對位與整合 48 4.4.1 資料點對位 49 4.4.2 資料點整合 53 第五章 實作成果 57 5.1 系統配備 57 5.2 程式架構與流程 58 5.3 量測解析度 59 5.4 量測精確度 60 5.5 量測成果 62 5.5.1 白色物體之量測成果 64 5.5.2 彩色物體之量測成果 67 5.5.3 人體外形之量測成果 69 第六章 結論與建議 75 6.1 結論 75 6.2 建議 76 參考文獻 77 附錄A Color Fringe Projection System (CFPS) 程式碼及使用說明 85 A.1 程式安裝執行說明 85 A.2 程式碼檔案介紹 85 A.2.1 核心程式碼(位於CFPS) 85 A.2.2 系統設定檔(位於CFPSParaSet) 86 A.2.3 外部引用程式碼(位於CFPS) 86 A.2.4 外部引用DLL檔與EXE檔(位於CFPSDebug) 87 A.2.5 其他檔案(位於CFPS) 87 A.3 系統主程式介面與程式碼說明 87 A.3.1 主程式介面 87 A.3.2 影像區(Image)介面說明 88 A.3.3 主要功能區(Main Function)介面說明 89 A.3.4 執行進度區(Progress)介面說明 90 A.3.5 訊息區(Message)介面說明 90 A.3.6 條紋與校正控制區(Fringe & Correction Control)介面說明 90 A.3.7 重建選項區(Unwrapping Options)說明 92 A.3.8 影像擷取區(Image Capture)說明 92 A.3.9 修正補償區(Compensation)說明 93 A.3.10 分析區(Analysis)說明 94 A.3.11 其他功能說明 94 A.4 系統類別與變數說明 95 A.4.1 類別說明(位於CFPSDataProcess.h) 95 A.4.2 變數說明(位於CFPSParameters.h) 95 A.4.3 總體變數說明(位於CFPSstdafx.h) 95 A.5 系統其餘函式說明 96 A.5.1 餘弦波形函式說明(位於CFPSDialogs.cpp) 96 A.5.2 主程式附屬函式說明(位於CFPSCFPSDlg.cpp) 96 A.5.3 數值方法函式說明(位於CFPSNumMethod.cpp) 97 A.6 程式操作說明 98 A.6.1 拍攝影像操作說明 98 A.6.2 三維外形重建操作說明 99 附錄B 資料點對位與整合操作說明 103 B.1 程式安裝說明 103 B.1.1 基本需求 103 B.1.2 環境設定 103 B.2 程式操作說明 104 作者簡歷 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相位重建法 | zh_TW |
| dc.subject | 三維外形量測 | zh_TW |
| dc.subject | 相位移法 | zh_TW |
| dc.subject | 投射彩色條紋 | zh_TW |
| dc.subject | 3D shape measurement | en |
| dc.subject | phase-unwrapping technique | en |
| dc.subject | color fringe projection | en |
| dc.subject | phase-shifting method | en |
| dc.title | 三維外形量測之N步彩色相位移法 | zh_TW |
| dc.title | N-step color phase-shifting method for 3D shape measurement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳隆庸,尤春風 | |
| dc.subject.keyword | 三維外形量測,相位移法,投射彩色條紋,相位重建法, | zh_TW |
| dc.subject.keyword | 3D shape measurement,phase-shifting method,color fringe projection,phase-unwrapping technique, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 12.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
