Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31802
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳光鐘(Kuang-Chong Wu)
dc.contributor.authorTsung-Yao Changen
dc.contributor.author張宗堯zh_TW
dc.date.accessioned2021-06-13T03:20:39Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-30
dc.identifier.citation參考文獻
[1] D. E. BESKOS,“ Boundary Element Methods in Mechanics. ”North-Holland, Amsterdam, (1987).
[2] G. R. LIU and K. Y. LAM, “ Two - Dimensional Time - Harmonic Elastodynamic Green’s Functions for Anisotropic Media. ” Int. J. Engng Sci. Vol. 34, No. 11, pp. 1327 - 1338, (1996).
[3] C.- Y. WANG and J. D. ACHENBACH, “ Three - Dimensional Time - Harmonic Elastodynamic Green’s Functions for Anisotropic Solids. ” Proc. R. Soc. Lond. A (1995) 449, 441 - 458.
[4] D. M. BARNETT, “ Physica Status Solidi B ”(1972).
[5] Y. C. PAN and T. W. CHOU, “ ASME J. Appl. Mech. ”(1976).
[6] R. G. PAYTON, “ Elastic Wave Propagation in Transversely Isotropic Media. ” The Hague : Martinus Nijhoff, (1983).
[7] M. N. KAZI-AOUAL, G. BONNETT and P. JOANNA,“ Geophys. J .”(1988).
[8] H. ZHU, “ ASME J. Appl. Mech. ”(1992).
[9] E. A. KRAUT , “ Reviews of Geophysics. ”(1992).
[10] ARTHUR P. BORESI and KEN P. CHONG, “ Elasticity in Engineering Mechanics. ” 2nd ed..
[11] ATKIN and FOX, “ An Introduction to the Theory of Elasticity. ” Longman, (1980).
[12] TIMOSHENKO and GOODIER, “ Theory of Elasticity. ” 2nd ed..
[13] SOKOLNIKOFF, “ Mathematical Theory of Elasticity. ”
[14] FUNG, “ Foundation of Solid Mechanics. ”
[15] T. C. T. TING, “ Anisotropic Elasticity Theory and Applications. ” Oxford University Press, (1996).
[16] S. G. Lekhnitskii, “ Theory of Elasticity of An Anisotropic Elastic Body. ” Holden - Day Inc., (1963).
[17] J. D. ACHENBACH, “Wave Propagation in Elastic Solids. ” North - Holland, (1973).
[18] K. GRAFF, “ Wave Motion in Elastic Solids. ” Ohio State University, (1975).
[19] B. A. AULD, “ Acoustic Fields and Waves in Solids. ”.
[20] G. R. LIU and K. Y. LAM ,“ Int. J. Solids Structures. ”(1994).
[21] C. Y. WANG and J. D. ACHENBACH, “ Wave Motion . ”(1993).
[22] G. R. LIU, J. TANI, T. OHYOSHI and K. WATANABE, ASME J. “Vibration and Acoustics. ” , (1991).
[23] LOVE, A. E. H. “ The mathematical Theory of Elasticity (4th edn).”New York : Dover,(1944).
[24] JOHN, F. “Plane Waves and Spherical Means Applied to Partial Differential Equations. ”New York : Interscience,(1995).
[25] BUDRECK, D. E. “Q. Jl Mech. Appl. Math. ”(1993).
[26] BUDRECK, R. “Q. Jl Mech. Appl. Math. ”(1967).
[27] COURANT, R. & HILBERT, D. “Methods of Mathematical Physics , Vol. II. ”New York : Interscience. (1962).
[28] INDENBOM , V. L. & LOTHE, J. “Elastic Strain Fields and Dislocation mobility. ”Elsevier,(1992).
[29] J. STOER and R. BULIRSCH, “ Introduction to Numerical Analysis. ” 3rd ed..
[30] M. ABRAMOWITZ and I. A. STEGUN, “ Handbook of Mathematical Functions. ” Dover Publication, New York, (1972).
[31] R. M. JONES,“ Mechanics of Composite Materials. ” Scripts, Washington, DC, (1975).
[32] G. R. LIU and K. Y. LAM, “ Mech. Composite Materials Struct. ”(1995).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31802-
dc.description.abstract本文所要推導的是,無邊際( Unbounded )均質( Homogeneous )異向彈性體( Anisotropic elastic materials ) 於二維( Two - dimension )狀況下承受線性時間週期性荷重( Line time - harmonic load ),或於三維( Three - dimension )狀況下承受點時間週期性荷重( Point time - harmonic load )之格林函數( Green’s function )。此格林函數需要處理積分表示和邊界積分的問題,可以運用邊界元素法( Boundary element method ) 推導此格林函數。由於邊界元素法在處理等向彈性體分析波傳( Wave propagation) 方面問題時,扮演著相當重要的角色,所以希望藉由邊界元素法在處理異向彈性體於彈性動力方面問題時,能與處理等向彈性體一樣的容易。本文將以推導所得到的格林函數,於等向彈性體材料與參考文獻上的解析解比對,以確認推導所得到的格林函數其正確性。於二維異向彈性體材料,推估格林函數其數據結果;於三維異向彈性體材料,與參考文獻比較數據結果是否吻合。另外運用傅立葉轉換的方式,解決二維及三維異向彈性體受時間週期性荷重狀況下所會遭遇到的問題,可以證明除了運用Radon轉換來推導格林函數,當然也可以使用傅立葉轉換來處理相同狀況的問題。本文期望運用座標轉換方式,先將材料性質轉換到新座標系,在得到轉換成新座標系後的結果,再次運用座標轉換的方式,轉換回原始座標系,即可得到原始座標系下,所欲求得的結果,亦即經由座標轉換,來處理觀察點方向不同時的狀況。zh_TW
dc.description.abstractAbstract
Generally speaking , no matter which kind of material want to ask the displacement or the strain , it is the way that tries to get the Green’s function under this state . This paper is to determine the Green’s function in an unbounded homogeneous anisotropic media generated by the application of a two-dimensional time-harmonic point load , or the application of a three-dimensional time-harmonic line load . This paper based on the Fourier transform is presented to determine the Green’s function in a anisotropic media due to the application of a time-harmonic load .This Green's function needs to deal with the problem of integral representations and boundary integral equations by the boundary element method . Because the boundary element method has been playing a very important role in analyzing wave propagation problems in isotropic media . It hopes to deal the elastodynamic problems for anisotropic media as easy as isotropic media . In the isotropic media , it needs to estimate its data result of the Green's function with the data result of the analytical solution . This paper expects to use the coordinate transformed to deal the state with different viewpoint directions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:20:39Z (GMT). No. of bitstreams: 1
ntu-95-R93543051-1.pdf: 1097165 bytes, checksum: 1507ca5edde64cafa67c6ce2eee174d9 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
摘要 I
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
符號表 IX
第一章、導論 - 1 -
1-1 研究動機 - 1 -
1-2 文獻回顧 - 2 -
1-3 研究目的與內容大綱 - 4 -
第二章、二維格林函數理論推導 - 7 -
2-1 異向彈性體 - 7 -
2-2 等向彈性體 - 16 -
2-3 無因次化 - 18 -
第三章、三維格林函數理論推導 - 23 -
3-1 異向彈性體 - 23 -
3-2 等向彈性體 - 40 -
3-3 無因次化 - 49 -
第四章、格林函數數值分析 - 54 -
4-1 高斯N點積分公式 - 54 -
4-2 二維等向彈性體之格林函數數值分析 - 55 -
4-3 二維異向彈性體之格林函數數值分析 - 57 -
4-4 三維等向彈性體之格林函數數值分析 - 59 -
4-5 三維異向彈性體之格林函數數值分析 - 61 -
第五章、結論與未來展望 - 65 -
5-1 結論 - 65 -
5-2 未來展望 - 68 -
參考文獻 - 70 -



圖目錄
圖2.1線性時間週期性荷重與座標系關係圖 - 72 -
圖2.2積分輪廓圖 - 72 -
圖3.1點時間週期性荷重與座標系關係圖 - 73 -
圖3.2 k座標系與原始座標系關係圖 - 73 -
圖3.3點時間週期性荷重與新座標系關係圖 - 74 -
圖3.4兩座標系、x與點時間週期性荷重的關係圖 - 74 -
圖4.1二維等向彈性體格林函數於X-X實數部分圖 - 75 -
圖4.2二維等向彈性體格林函數於X-X虛數部分圖 - 75 -
圖4.3二維等向彈性體格林函數於Y-Y實數部分圖 - 76 -
圖4.4二維等向彈性體格林函數於Y-Y虛數部分圖 - 76 -
圖4.5二維等向彈性體格林函數於Z-Z實數部分圖 - 77 -
圖4.6二維等向彈性體格林函數於Z-Z虛數部分圖 - 77 -
圖4.7二維異向彈性體格林函數於X-X實數部分圖 - 78 -
圖4.8二維異向彈性體格林函數於X-X虛數部分圖 - 78 -
圖4.9三維等向彈性體格林函數於Z-Z, 圖 - 79 -
圖4.10三維等向彈性體格林函數於Z-Z, 圖 - 79 -
圖4.11三維等向彈性體格林函數於Z-Z, 圖 - 80 -
圖4.12三維等向彈性體格林函數於Z-Z, 圖 - 80 -
圖4.13三維異向彈性體(冰)於Z-Z, 圖 - 81 -
圖4.14三維異向彈性體(冰)於Z-Z, 圖 - 81 -
圖4.15三維異向彈性體(冰)於Z-Z, 圖 - 82 -
圖4.16三維異向彈性體(冰)於Z-Z, 圖 - 82 -
圖4.17三維異向彈性體(石墨環氧)於Z-Z, 圖 - 83 -
圖4.18三維異向彈性體(石墨環氧)於Z-Z, 圖 - 83 -
圖4.19三維異向彈性體(石墨環氧)於Z-Z, 圖 - 84 -
圖4.20三維異向彈性體(石墨環氧)於Z-Z, 圖 - 84 -





表目錄
表4.1二維等向彈性體與解析解於X-X數據結果比較 - 85 -
表4.2二維等向彈性體與解析解於Y-Y數據結果比較 - 86 -
表4.3二維等向彈性體與解析解於Z-Z數據結果比較 - 87 -
表4.4碳環氧材料彈性材料常數 - 88 -
表4.5三維等向彈性體格林函數與參考文獻[1]比較, - 88 -
表4.6三維等向彈性體格林函數與參考文獻[1]比較,N=10 - 89 -
表4.7三維等向彈性體格林函數與參考文獻[1]比較,N=20 - 90 -
表4.8三維等向彈性體格林函數與參考文獻[1]比較,N=30 - 91 -
表4.9冰彈性材料常數 - 91 -
表4.10石墨環氧複合材料彈性材料常數 - 92 -
dc.language.isozh-TW
dc.subject傅立葉轉換zh_TW
dc.subject時間週期性荷重zh_TW
dc.subject格林函數zh_TW
dc.subject邊界元素法zh_TW
dc.subject座標轉換zh_TW
dc.subject高斯 N點積分法zh_TW
dc.subjectthe Green’s functionen
dc.subjectthe Gauss-Legendre N-point quadrature formulaen
dc.subjectthe coordinate transformeden
dc.subjectthe boundary element methoden
dc.subjectthe time-harmonic loaden
dc.subjectthe Fourier transformen
dc.title二維及三維異向彈性體
受時間週期性荷重之格林函數
zh_TW
dc.titleTwo-dimensional and three-dimensional Green's functions in time-harmonic loadsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正憲(Jeng-Shian Chang),郭茂坤(Mao-Kuen Kuo)
dc.subject.keyword時間週期性荷重,格林函數,傅立葉轉換,邊界元素法,座標轉換,高斯 N點積分法,zh_TW
dc.subject.keywordthe time-harmonic load,the Green’s function,the Fourier transform,the boundary element method,the coordinate transformed,the Gauss-Legendre N-point quadrature formula,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
1.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved