請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章(Wen-Chang Chen) | |
| dc.contributor.author | Wei-Ren Tu | en |
| dc.contributor.author | 涂威任 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:19:47Z | - |
| dc.date.available | 2011-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | 1. Ito, T.; Shirakawa, H.; Ikeda, S. J. J. Polym. Sci. Chem. Ed. 1974, 12, 11
2. Chiang, C. K.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098 3. Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S.; Reynolds, J. R. Adv. Mater. 2003, 15, 855 4. Perepichka, I.; PerePichka, D.; Wudl, F. Adv. Mater. 2005, 17, 2281 5. Kaelble, D. H.; Dynes, P. J.; Cirlin, E. H. J. adhes 1974, 6, 1-2, 23-48 6. Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Mater. 2001, 11, 15 7. Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471 8. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W Adv. Mater. 2000, 12, 23, 1737-1750 9. Lovinger A. J.; Rothberg L. J. J. Mater. Res. 1996, 11, 6, 1581 10. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 1077 11. Kim, Y. G.; Thompson, B. C.; Ananthakrishana, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R. J. Mater. Res. 2005, 20, 12, 3188 12. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Adv. Funct. Mater. 2001, 11, No.4, 255 13. Kros A.; Sommerdijk N. A. J. M.; Nolte R. J. M. Sensors and Actuators B-Chemical 2005, 106, 1, 289 14. Mortimer R. J.; Dyer A. L.; Reynolds J. R. Display 2006, 27, 2-18 15. Venturini, J.; Koudoumas, E.; Couris, S. J. Mater. Chem. 2002, 12(7), 2071-2076 16. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polyemrs 2nd, 1998, M. Dekker, New York 17. Roncali, J. Chem. Rev. 1997, 97, 173 18. van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W. Materials Science and Engineering, 2001, 32, 1-40 19. Mastragostino, M.; Arbizzani, C,; Paraventi, R. J. Electrochem. Soc. 2000, 147(2), 407-412 20. Roncali, J. Chem. Rev. 1992, 92, 711 21. Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382 22. Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J. J.;Pomerantz, W. J. J. Chem. Soc., Chem. Commun. 1992, 1672 23. Meier, H. Organic Semiconductors; Verlag Chemie: Weinheim, 1974 24. Diaz, A. F.; Crowley, J.; Bargon, J.; Gardini, G. P.; Torrance, J. B. J. Electroanal. Chem. 1981, 121, 355 25. Kitamura, C.; Tanaka, S.; Yamashita, Y. J. Chem. Soc., Chem. Commun. 1994, 1585 26. Kellogg, R. M.; Groen, M. B.; Wynberg, H. J. Org. Chem. 1967, 32, 3093 27. Havinga, E. E.; ten Hoeve, W.; Wynberg, H. Polym. Bull. 1992, 29, 119 28. Law, K. Y. Chem. Rev. 1993, 93, 449 29. Chen, W. C., Jenekhe, S. A. Macromol. Chem. Phys. 1998, 199, 655-666 30. Bernstein, U.; Chaikin, P. M.; Pincus, P. Phys. Rev. Lett. 1975, 34, 5, 271-274 31. Kozaki, M.; Isoyama, A.; Akita, K.; Okada, K. Org. Lett. 2005, 7, 115-118 32. Jenekhe S. A. Nature, 1986, 322, 345 33. Jenekhe S. A. Macromolecules 1986, 19, 2663-2664 34. Jenekhe S. A. Macromolecules 1990, 23, 2848-2854 35. Chen W-C.; Jenekhe S. A. Macromolecules, 1995, 28, 454-464 36. Chen W-C.; Jenekhe S. A. Macromolecules, 1995, 28, 465-480 37. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds J. R. Adv. Mater. 2000, 12, 7, 481 38. Chen W. C.; Liu C. L.; Yen C. T.; Tsai F. C.; Tonzola C. J.; Olson N.; Jenekhe S. A. Macromolecules 2004, 37, 5959-5964 39. Benincori, T.; Rizzo, S.; Sannicolo, F.; Schiavon, G.;Zecchin, S.; Zotti, G. Macromolecules 2003, 36, 5114 40. Jira, R.; Bräunling, H. Synth. Met. 1987, 17, 691 41. Bräunling, H.; Becker R.; Blöchl, G. Synth. Met. 1991, 41-43, 1539 42. Hanack, M.; Hieber, G.; Dewald, G.; Ritter, H. Synth. Met. 1991, 41-43, 507 43. Hanack, M.; Hieber, G.; Mangold, K-M.; Ritter, H.; Röhrig, U.;Schmid, U. Synth. Met. 1993, 55-57, 827 44. Goto, H.; Akagi, K.; Shirakawa, H. Synth. Met. 1997, 84, 385 45. Goto, H.; Akagi, K. Synth. Met. 2001, 119, 165 46. Kiebooms R. H. L.; Goto, H.; Akagi, K. Macromolecules 2001, 34, 7989 47. R. Kiebooms, F. Wudl, Synth. Met., 1999, 109, 40 48. Zhang, Q. H.; Li, Y.; Yang, M. J. J. Mater. Sci. 2004, 39, 6089 49. Yang, M. J.; Zhang, Q. H.; Wu, P.; Ye, H.; Liu X. Polymer 2005, 46 6266 50. Zhang, Q.; Li, Y.; Yang, M. Synth. Met. 2004, 146, 69 51. Walczak, R. M.; Reynolds, J. R. Adv. Mater. 2006, 18, 1121-1131 52. Bohn, C.; Sadki, S.; Brennan, A. B.; Reynolds, J. R. J. Electrochem. Soc. 2002, 149, E281 53. Zong, K.; Reynolds J. R. J. Org. Chem. 2001, 66, 6873 54. Sönmez, G.; Schwendeman, I.; Schottland, P.; Zong, K.; Reynolds J. R. Macromolecules, 2003, 36, 639-647 55. Yang, C. J.; Jenekhe, S. A. Macromolecules 1995, 28, 1180 56. Yamamoto, T. Macromol. Rapid Comm. 2002, 23, 583 57. Kwon, O.; McKee, M. L. J. Phys. Chem. A 2000, 104, 7106 58. Schottland, P.; Zong, K.; Gaupp, C. L.; Thompson, B. C.; Thomas, C. A.; Giurgiu, I.; Hickman, R.; Aboud, K. A.; Reynolds, J. R. Macromolecules, 2000, 33, 7051 59. Salzner, U.; Pickup, P. G.; Poirier, R. A.; Lagowski, J. B. J. Phys. Chem. A 1998, 96, 177 60. Ma, J.; Li, S. H.; Jiang, Y. S. Macromolecules 2002, 35, 1109 61. Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907 62. Yan, W.; Li, A-K.; Hsu, C-S.; Zhang, Z-C. Chinese Journal of Polymer Science 2001, 19, 5, 499-502 63. Mintmire, J. W.; White, C. T.; Elert, M. L. Synth. Met. 1986, 16, 235 64. Bredas, J. L. Mol. Cryst. Liquid Cryst. 1985, 118, 49 65. Kertesz, M.; Lee, Y. S. J. Phys Chem. 1987, 91, 2690-2692 66. Kürti, J.; Surján, P. R.; Kertesz, M. J. Am. Chem. Soc. 1991, 113, 9865 67. Toussaint, J. M.; Bredas, J. L. Macromolecules 1993, 26, 5240-5248 68. Musso, G. F.; Dellepiane, G.; Cuniberti, C.; Rui M.; Borghesi, A. Synth. Met. 1995, 72, 209-215 69. Hong, S. Y.; Song, J. M. Synth. Met. 1996, 83, 141-146 70. Merz, A.; Schropp, R.; Dötterl, E. Synthesis 1995, 795 71. Kiebooms, R.; Goto, H.; Akagi, K. Synth. Met. 2001, 119, 117-118 72. Keller, R. J. The Sigma Library of FT-IR Spectra; Sigma Chemical Co.: St. Louis, MO, 1986; Vol. 2, P. 777 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31772 | - |
| dc.description.abstract | 含噻吩以及環二氧乙基噻吩所合成的次甲基共軛高分子,由於其所具有的低能隙和可調整的光電性質,而引起科學家們的興趣。然而,以吡咯為主的次甲基共軛高分子至今尚無被深入的研究。這篇論文將討論含吡咯之次甲基共軛高分子和聚環二氧乙基吡咯的理論電子結構、合成方法和其電子組態。
在理論分析部份,使用高斯套裝軟體計算含吡咯單聚高分子和次甲基高分子的幾何結構與電子組態。聚次甲基吡咯和聚次甲基環二氧乙基吡咯計算出來的電子能隙為0.73和0.68電子伏特,因其主鏈形成醌型結構,所以得到的能隙也較單聚物高分子來的低。由於環二氧乙基的提供電子能力,造成聚次甲基環二氧乙基吡咯具有低於聚次甲基吡咯的游離能和電子親和力。除此之外,計算含有氧、硫、硒、氮之次甲基環二氧乙基高分子以探討雜原子的影響。由於含氮之次甲基環二氧乙基高分子具有以醌型結構為主的幾何結構,使其具有最小的游離能 (2.54 eV) 、電子親和力 (1.86 eV),以及電子能隙 (0.68eV)。 實驗部分,分別以1-甲基吡咯、1-苯基吡咯和環二氧乙基吡咯做為單體,與苯甲醛利用酸催化進行縮合聚合反應,成功合成出不同的聚次甲基吡咯共軛高分子 (PmPy-b)、(PphPy-b, PphPy-nb, PphPy-mb)、(PbEDOP-b, PbEDOP-nb)。從可見光紫外線吸收光譜和電化學實驗可以得到PphPy-b, PphPy-nb, PphPy-mb , PmPy-b的電子能隙為 (1.99, 1.73, 2.01, 1.89) 和 (1.81, 1.83, 1.86, 1.65)電子伏特。而高度脫氫和拉電子的二氧化氮官能基使得PphPy-nb和PmPy-b具有相對於其他兩個高分子的低能隙。另外,PbEDOP-nb具有比其母質聚吡咯 (2.85 eV)、聚環二氧乙基吡咯 (2.0 eV)還要低的能隙 (1.4 eV),也可由此印證環二氧乙基和二氧化氮取代基對電子能態的影響性。而且,從結果可以推測含吡咯的次甲基共軛高分子為一種新穎的低能隙高分子。 | zh_TW |
| dc.description.abstract | Methine bridged conjugated polythiophene and poly(dioxyethylenethiophene) have attracted significant scientific interest due to intrinsic small bandgaps and tunable optoelectronic properties. However, such class of polymers based on pyrrole has not been explored yet. In this thesis, the theoretical electronic structures, synthesis, and electronic properties of methine bridged pyrrole and poly(ethylenedioxypyrrole) are reported.
The theoretical geometries and electronic properties of polypyrrole (PPy), poly-3,4-ethylenedioxypyrrole (PEDOP), poly(pyrrylene methine) (PPy-M) and poly(3,4-ethylenedioxypyrrole methine) (PEDOP-M) were analyzed by Gaussian03 program package. The calculated bandgaps of PPy-M and PEDOP-M are 0.73 and 0.68 eV, which are much smaller than those of the corresponding homopolymers, PPy, and PEDOP, due to the incorporation of quinoid moiety. PEDOP-M shows a smaller HOMO and LUMO values (2.54 and 1.86 eV) than PPy-M (3.20 and 2.47 eV) because of its electron-donating ethylenedioxy moiety. Besides, the electronic properties of four poly(3,4-ethylenedioxyheteroatom methine)s (PEDOX-M, X=O, S, Se, NH) were also analyzed to explore the effects of heteroatom. The theoretical bandgaps are 0.91, 0.93, 0.88, and 0.68 eV for PEDOS-M, PEDOT-M, PEDOF-M, and PEDOP-M, respectively. PEDOP-M has the geometry of quinoid-methine-quinoid-like and results in the smallest IP/EA (2.54/1.86 eV) and lowest bandgap (0.68eV) among the four polymers. Methine bridged conjugated polypyrrole derivative was successfully synthesized from n-methylpyrrole/benzaldehydes (PmPy-b), n-phenzylpyrrole/benzaldehydes (PphPy-b, PphPy-nb, PphPy-mb), and n-benzyl-3,4-ethylenedioxypyrrole/ benzaldehydes (PbEDOP-b, PbEDOP-nb) using acid-catalyzed polymerization. The optical and electrochemical bandgaps of PphPy-b, PphPy-nb, PphPy-mb, and PmPy-b are (1.99, 1.73, 2.01, 1.89) and (1.81, 1.83, 1.86, 1.65) eV, respectively. The small Eg of PphPy-nb and PmPy-b than the other two polymers might be due to higher degree of dehydrogenation or electron-withdrawing nitro side group. The optical bandgap of PEDOP-nb had a relatively small optical bandgap of 1.45 eV, which was much smaller than that of PPy (2.85eV) and PEDOP (2.0eV). It suggests the significance of ethylenedioxy fused ring and nitro side group on the electronic properties. The present study indicates the methine bridged conjugated polymer based on pyrrole derivative are a class of low bandgap polymers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:19:47Z (GMT). No. of bitstreams: 1 ntu-95-R93549028-1.pdf: 1656501 bytes, checksum: 30720f170c838b58a3427008aef670a2 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract………………………………………………………………………………..I
中文摘要……………………………………………………………………………..III Contents………………………………………………………………………………V Table Captions…………………………………………………………………….VIII Figure Captions (include scheme)…………………………………………………..X Chapter 1 Introduction…………………………………………………………..1 1-1 Introduction of Conjugated Polymers……………………………1 1-1-1 Development and Application of Conjugated Polymers 1-1-2 Fundamental Electronic Properties and Definitions of Conjugated Polymers………………………………….2 1-2 Implication Between Bandgap and Modification of Chemical Structure of Conjugated Polymers……………………………….3 1-3 Introduction of Small Bandgap Conjugated Polymers…………..7 1-4 Methine-Bridged Small Bandgap Polymers……………………..9 1-4-1 Model Compound…………………………………….10 1-4-2 Development of Methine-Bridged Conjugated Polymers 1-5 Research Objectives…………………………………………….14 Chapter 2 Theoretical Analysis of Electronic structure of Poly(heteroarylene methine)s…………………………………………………………….22 2-1 Literature Review of Theoretical Calculation of Methine-Bridged Polymers………………………………………………………..22 2-2 Computational Details…………………………………………..23 2-3 Theoretical Analysis of Pyrrole-Based Homopolymer and Methine-bridged Polymer………………………………………25 2-4 Influence of Heteroatom on Geometry and Electronic Structure 26 2-5 Conclusion………………………………………………………27 Chapter 3 Synthesis and Characterization of Methine-Bridge N-Substituted Polypyrrole and Its Derivatives…………………………………….35 3-1 Introduction……………………………………………………..35 3-2 Experimental Section…………………………………………...35 3-2-1 Materials……………………………………………...35 3-2-2 Synthesis of n-benzyl-3,4-ethylenedioxypyrrole (bEDOP)……………………………………………...36 3-2-2-1 Synthesis of n-benzyl-3,4-ethylenedioxy- pyrrole-2,5-dicarboxylic acid……………...36 3-2-2-2 Synthesis of n-benzyl-3,4-ethylenedioxy- pyrrole……………………………………..37 3-2-3 Synthesis of Pyrrole-Based of Methine-Bridged Polymer by Sulfuric Acid…………………………….38 3-2-4 Synthesis of Pyrrole-Based of Methine-Bridged Polymer by Phosphorus Oxychloride………………..40 3-2-5 Characterization………………………………………42 3-2-5-1 Instruments………………………………...42 3-2-5-2 Conditions of Instrumental Analysis………44 3-3 Results and Discussion………………………………………….46 3-3-1 Characterization of Monomers……………………….46 3-3-2 Polymer Synthesis and Structure……………………..47 3-3-3 Thermal Properties…………………………………...51 3-3-4 UV-vis Absorption Spectra…………………………...52 3-3-5 Electrochemical Properties and Electronic Structures 54 3-4 Conclusion………………………………………………………56 Chapter 4 Conclusions and Future Work……………………………………..80 References…………………………………………………………………………...82 Appendix…………………………………………………………………………….86 | |
| dc.language.iso | en | |
| dc.subject | 吡 | zh_TW |
| dc.subject | 咯 | zh_TW |
| dc.subject | 次甲基共軛高分子 | zh_TW |
| dc.subject | 電子結構 | zh_TW |
| dc.subject | conjugated polymer | en |
| dc.subject | methine | en |
| dc.subject | pyrrole | en |
| dc.subject | electronic properties | en |
| dc.title | 聚吡咯次甲基共軛高分子之合成及電子結構 | zh_TW |
| dc.title | Methine Bridged Conjugated Polypyrroles:Synthesis and Electronic Properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林金福,劉韋志,顏誠廷 | |
| dc.subject.keyword | 吡,咯,次甲基共軛高分子,電子結構, | zh_TW |
| dc.subject.keyword | pyrrole,methine,conjugated polymer,electronic properties, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
