Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorWei-Ren Tuen
dc.contributor.author涂威任zh_TW
dc.date.accessioned2021-06-13T03:19:47Z-
dc.date.available2011-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation1. Ito, T.; Shirakawa, H.; Ikeda, S. J. J. Polym. Sci. Chem. Ed. 1974, 12, 11
2. Chiang, C. K.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098
3. Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S.; Reynolds, J. R. Adv. Mater. 2003, 15, 855
4. Perepichka, I.; PerePichka, D.; Wudl, F. Adv. Mater. 2005, 17, 2281
5. Kaelble, D. H.; Dynes, P. J.; Cirlin, E. H. J. adhes 1974, 6, 1-2, 23-48
6. Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Mater. 2001, 11, 15
7. Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471
8. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W Adv. Mater. 2000, 12, 23, 1737-1750
9. Lovinger A. J.; Rothberg L. J. J. Mater. Res. 1996, 11, 6, 1581
10. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 1077
11. Kim, Y. G.; Thompson, B. C.; Ananthakrishana, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R. J. Mater. Res. 2005, 20, 12, 3188
12. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Adv. Funct. Mater. 2001, 11, No.4, 255
13. Kros A.; Sommerdijk N. A. J. M.; Nolte R. J. M. Sensors and Actuators B-Chemical 2005, 106, 1, 289
14. Mortimer R. J.; Dyer A. L.; Reynolds J. R. Display 2006, 27, 2-18
15. Venturini, J.; Koudoumas, E.; Couris, S. J. Mater. Chem. 2002, 12(7), 2071-2076
16. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polyemrs 2nd, 1998, M. Dekker, New York
17. Roncali, J. Chem. Rev. 1997, 97, 173
18. van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W. Materials Science and Engineering, 2001, 32, 1-40
19. Mastragostino, M.; Arbizzani, C,; Paraventi, R. J. Electrochem. Soc. 2000, 147(2), 407-412
20. Roncali, J. Chem. Rev. 1992, 92, 711
21. Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382
22. Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J. J.;Pomerantz, W. J. J. Chem. Soc., Chem. Commun. 1992, 1672
23. Meier, H. Organic Semiconductors; Verlag Chemie: Weinheim, 1974
24. Diaz, A. F.; Crowley, J.; Bargon, J.; Gardini, G. P.; Torrance, J. B. J. Electroanal. Chem. 1981, 121, 355
25. Kitamura, C.; Tanaka, S.; Yamashita, Y. J. Chem. Soc., Chem. Commun. 1994, 1585
26. Kellogg, R. M.; Groen, M. B.; Wynberg, H. J. Org. Chem. 1967, 32, 3093
27. Havinga, E. E.; ten Hoeve, W.; Wynberg, H. Polym. Bull. 1992, 29, 119
28. Law, K. Y. Chem. Rev. 1993, 93, 449
29. Chen, W. C., Jenekhe, S. A. Macromol. Chem. Phys. 1998, 199, 655-666
30. Bernstein, U.; Chaikin, P. M.; Pincus, P. Phys. Rev. Lett. 1975, 34, 5, 271-274
31. Kozaki, M.; Isoyama, A.; Akita, K.; Okada, K. Org. Lett. 2005, 7, 115-118
32. Jenekhe S. A. Nature, 1986, 322, 345
33. Jenekhe S. A. Macromolecules 1986, 19, 2663-2664
34. Jenekhe S. A. Macromolecules 1990, 23, 2848-2854
35. Chen W-C.; Jenekhe S. A. Macromolecules, 1995, 28, 454-464
36. Chen W-C.; Jenekhe S. A. Macromolecules, 1995, 28, 465-480
37. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds J. R. Adv. Mater. 2000, 12, 7, 481
38. Chen W. C.; Liu C. L.; Yen C. T.; Tsai F. C.; Tonzola C. J.; Olson N.; Jenekhe S. A. Macromolecules 2004, 37, 5959-5964
39. Benincori, T.; Rizzo, S.; Sannicolo, F.; Schiavon, G.;Zecchin, S.; Zotti, G. Macromolecules 2003, 36, 5114
40. Jira, R.; Bräunling, H. Synth. Met. 1987, 17, 691
41. Bräunling, H.; Becker R.; Blöchl, G. Synth. Met. 1991, 41-43, 1539
42. Hanack, M.; Hieber, G.; Dewald, G.; Ritter, H. Synth. Met. 1991, 41-43, 507
43. Hanack, M.; Hieber, G.; Mangold, K-M.; Ritter, H.; Röhrig, U.;Schmid, U. Synth. Met. 1993, 55-57, 827
44. Goto, H.; Akagi, K.; Shirakawa, H. Synth. Met. 1997, 84, 385
45. Goto, H.; Akagi, K. Synth. Met. 2001, 119, 165
46. Kiebooms R. H. L.; Goto, H.; Akagi, K. Macromolecules 2001, 34, 7989
47. R. Kiebooms, F. Wudl, Synth. Met., 1999, 109, 40
48. Zhang, Q. H.; Li, Y.; Yang, M. J. J. Mater. Sci. 2004, 39, 6089
49. Yang, M. J.; Zhang, Q. H.; Wu, P.; Ye, H.; Liu X. Polymer 2005, 46 6266
50. Zhang, Q.; Li, Y.; Yang, M. Synth. Met. 2004, 146, 69
51. Walczak, R. M.; Reynolds, J. R. Adv. Mater. 2006, 18, 1121-1131
52. Bohn, C.; Sadki, S.; Brennan, A. B.; Reynolds, J. R. J. Electrochem. Soc. 2002, 149, E281
53. Zong, K.; Reynolds J. R. J. Org. Chem. 2001, 66, 6873
54. Sönmez, G.; Schwendeman, I.; Schottland, P.; Zong, K.; Reynolds J. R. Macromolecules, 2003, 36, 639-647
55. Yang, C. J.; Jenekhe, S. A. Macromolecules 1995, 28, 1180
56. Yamamoto, T. Macromol. Rapid Comm. 2002, 23, 583
57. Kwon, O.; McKee, M. L. J. Phys. Chem. A 2000, 104, 7106
58. Schottland, P.; Zong, K.; Gaupp, C. L.; Thompson, B. C.; Thomas, C. A.; Giurgiu, I.; Hickman, R.; Aboud, K. A.; Reynolds, J. R. Macromolecules, 2000, 33, 7051
59. Salzner, U.; Pickup, P. G.; Poirier, R. A.; Lagowski, J. B. J. Phys. Chem. A 1998, 96, 177
60. Ma, J.; Li, S. H.; Jiang, Y. S. Macromolecules 2002, 35, 1109
61. Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907
62. Yan, W.; Li, A-K.; Hsu, C-S.; Zhang, Z-C. Chinese Journal of Polymer Science 2001, 19, 5, 499-502
63. Mintmire, J. W.; White, C. T.; Elert, M. L. Synth. Met. 1986, 16, 235
64. Bredas, J. L. Mol. Cryst. Liquid Cryst. 1985, 118, 49
65. Kertesz, M.; Lee, Y. S. J. Phys Chem. 1987, 91, 2690-2692
66. Kürti, J.; Surján, P. R.; Kertesz, M. J. Am. Chem. Soc. 1991, 113, 9865
67. Toussaint, J. M.; Bredas, J. L. Macromolecules 1993, 26, 5240-5248
68. Musso, G. F.; Dellepiane, G.; Cuniberti, C.; Rui M.; Borghesi, A. Synth. Met. 1995, 72, 209-215
69. Hong, S. Y.; Song, J. M. Synth. Met. 1996, 83, 141-146
70. Merz, A.; Schropp, R.; Dötterl, E. Synthesis 1995, 795
71. Kiebooms, R.; Goto, H.; Akagi, K. Synth. Met. 2001, 119, 117-118
72. Keller, R. J. The Sigma Library of FT-IR Spectra; Sigma Chemical Co.: St. Louis, MO, 1986; Vol. 2, P. 777
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31772-
dc.description.abstract含噻吩以及環二氧乙基噻吩所合成的次甲基共軛高分子,由於其所具有的低能隙和可調整的光電性質,而引起科學家們的興趣。然而,以吡咯為主的次甲基共軛高分子至今尚無被深入的研究。這篇論文將討論含吡咯之次甲基共軛高分子和聚環二氧乙基吡咯的理論電子結構、合成方法和其電子組態。
  在理論分析部份,使用高斯套裝軟體計算含吡咯單聚高分子和次甲基高分子的幾何結構與電子組態。聚次甲基吡咯和聚次甲基環二氧乙基吡咯計算出來的電子能隙為0.73和0.68電子伏特,因其主鏈形成醌型結構,所以得到的能隙也較單聚物高分子來的低。由於環二氧乙基的提供電子能力,造成聚次甲基環二氧乙基吡咯具有低於聚次甲基吡咯的游離能和電子親和力。除此之外,計算含有氧、硫、硒、氮之次甲基環二氧乙基高分子以探討雜原子的影響。由於含氮之次甲基環二氧乙基高分子具有以醌型結構為主的幾何結構,使其具有最小的游離能 (2.54 eV) 、電子親和力 (1.86 eV),以及電子能隙 (0.68eV)。
實驗部分,分別以1-甲基吡咯、1-苯基吡咯和環二氧乙基吡咯做為單體,與苯甲醛利用酸催化進行縮合聚合反應,成功合成出不同的聚次甲基吡咯共軛高分子 (PmPy-b)、(PphPy-b, PphPy-nb, PphPy-mb)、(PbEDOP-b, PbEDOP-nb)。從可見光紫外線吸收光譜和電化學實驗可以得到PphPy-b, PphPy-nb, PphPy-mb , PmPy-b的電子能隙為 (1.99, 1.73, 2.01, 1.89) 和 (1.81, 1.83, 1.86, 1.65)電子伏特。而高度脫氫和拉電子的二氧化氮官能基使得PphPy-nb和PmPy-b具有相對於其他兩個高分子的低能隙。另外,PbEDOP-nb具有比其母質聚吡咯 (2.85 eV)、聚環二氧乙基吡咯 (2.0 eV)還要低的能隙 (1.4 eV),也可由此印證環二氧乙基和二氧化氮取代基對電子能態的影響性。而且,從結果可以推測含吡咯的次甲基共軛高分子為一種新穎的低能隙高分子。
zh_TW
dc.description.abstractMethine bridged conjugated polythiophene and poly(dioxyethylenethiophene) have attracted significant scientific interest due to intrinsic small bandgaps and tunable optoelectronic properties. However, such class of polymers based on pyrrole has not been explored yet. In this thesis, the theoretical electronic structures, synthesis, and electronic properties of methine bridged pyrrole and poly(ethylenedioxypyrrole) are reported.
The theoretical geometries and electronic properties of polypyrrole (PPy), poly-3,4-ethylenedioxypyrrole (PEDOP), poly(pyrrylene methine) (PPy-M) and poly(3,4-ethylenedioxypyrrole methine) (PEDOP-M) were analyzed by Gaussian03 program package. The calculated bandgaps of PPy-M and PEDOP-M are 0.73 and 0.68 eV, which are much smaller than those of the corresponding homopolymers, PPy, and PEDOP, due to the incorporation of quinoid moiety. PEDOP-M shows a smaller HOMO and LUMO values (2.54 and 1.86 eV) than PPy-M (3.20 and 2.47 eV) because of its electron-donating ethylenedioxy moiety. Besides, the electronic properties of four poly(3,4-ethylenedioxyheteroatom methine)s (PEDOX-M, X=O, S, Se, NH) were also analyzed to explore the effects of heteroatom. The theoretical bandgaps are 0.91, 0.93, 0.88, and 0.68 eV for PEDOS-M, PEDOT-M, PEDOF-M, and PEDOP-M, respectively. PEDOP-M has the geometry of quinoid-methine-quinoid-like and results in the smallest IP/EA (2.54/1.86 eV) and lowest bandgap (0.68eV) among the four polymers.
Methine bridged conjugated polypyrrole derivative was successfully synthesized from n-methylpyrrole/benzaldehydes (PmPy-b), n-phenzylpyrrole/benzaldehydes (PphPy-b, PphPy-nb, PphPy-mb), and n-benzyl-3,4-ethylenedioxypyrrole/ benzaldehydes (PbEDOP-b, PbEDOP-nb) using acid-catalyzed polymerization. The optical and electrochemical bandgaps of PphPy-b, PphPy-nb, PphPy-mb, and PmPy-b are (1.99, 1.73, 2.01, 1.89) and (1.81, 1.83, 1.86, 1.65) eV, respectively. The small Eg of PphPy-nb and PmPy-b than the other two polymers might be due to higher degree of dehydrogenation or electron-withdrawing nitro side group. The optical bandgap of PEDOP-nb had a relatively small optical bandgap of 1.45 eV, which was much smaller than that of PPy (2.85eV) and PEDOP (2.0eV). It suggests the significance of ethylenedioxy fused ring and nitro side group on the electronic properties. The present study indicates the methine bridged conjugated polymer based on pyrrole derivative are a class of low bandgap polymers.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:19:47Z (GMT). No. of bitstreams: 1
ntu-95-R93549028-1.pdf: 1656501 bytes, checksum: 30720f170c838b58a3427008aef670a2 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAbstract………………………………………………………………………………..I
中文摘要……………………………………………………………………………..III
Contents………………………………………………………………………………V
Table Captions…………………………………………………………………….VIII
Figure Captions (include scheme)…………………………………………………..X
Chapter 1 Introduction…………………………………………………………..1
1-1 Introduction of Conjugated Polymers……………………………1
1-1-1 Development and Application of Conjugated Polymers
1-1-2 Fundamental Electronic Properties and Definitions of
Conjugated Polymers………………………………….2
1-2 Implication Between Bandgap and Modification of Chemical
Structure of Conjugated Polymers……………………………….3
1-3 Introduction of Small Bandgap Conjugated Polymers…………..7
1-4 Methine-Bridged Small Bandgap Polymers……………………..9
1-4-1 Model Compound…………………………………….10
1-4-2 Development of Methine-Bridged Conjugated Polymers
1-5 Research Objectives…………………………………………….14
Chapter 2 Theoretical Analysis of Electronic structure of Poly(heteroarylene methine)s…………………………………………………………….22
2-1 Literature Review of Theoretical Calculation of Methine-Bridged Polymers………………………………………………………..22
2-2 Computational Details…………………………………………..23
2-3 Theoretical Analysis of Pyrrole-Based Homopolymer and
Methine-bridged Polymer………………………………………25
2-4 Influence of Heteroatom on Geometry and Electronic Structure 26
2-5 Conclusion………………………………………………………27
Chapter 3 Synthesis and Characterization of Methine-Bridge N-Substituted Polypyrrole and Its Derivatives…………………………………….35
3-1 Introduction……………………………………………………..35
3-2 Experimental Section…………………………………………...35
3-2-1 Materials……………………………………………...35
3-2-2 Synthesis of n-benzyl-3,4-ethylenedioxypyrrole (bEDOP)……………………………………………...36
3-2-2-1 Synthesis of n-benzyl-3,4-ethylenedioxy- pyrrole-2,5-dicarboxylic acid……………...36
3-2-2-2 Synthesis of n-benzyl-3,4-ethylenedioxy- pyrrole……………………………………..37
3-2-3 Synthesis of Pyrrole-Based of Methine-Bridged Polymer by Sulfuric Acid…………………………….38
3-2-4 Synthesis of Pyrrole-Based of Methine-Bridged Polymer by Phosphorus Oxychloride………………..40
3-2-5 Characterization………………………………………42
3-2-5-1 Instruments………………………………...42
3-2-5-2 Conditions of Instrumental Analysis………44
3-3 Results and Discussion………………………………………….46
3-3-1 Characterization of Monomers……………………….46
3-3-2 Polymer Synthesis and Structure……………………..47
3-3-3 Thermal Properties…………………………………...51
3-3-4 UV-vis Absorption Spectra…………………………...52
3-3-5 Electrochemical Properties and Electronic Structures 54
3-4 Conclusion………………………………………………………56
Chapter 4 Conclusions and Future Work……………………………………..80
References…………………………………………………………………………...82
Appendix…………………………………………………………………………….86
dc.language.isoen
dc.subject吡zh_TW
dc.subject咯zh_TW
dc.subject次甲基共軛高分子zh_TW
dc.subject電子結構zh_TW
dc.subjectconjugated polymeren
dc.subjectmethineen
dc.subjectpyrroleen
dc.subjectelectronic propertiesen
dc.title聚吡咯次甲基共軛高分子之合成及電子結構zh_TW
dc.titleMethine Bridged Conjugated Polypyrroles:Synthesis and Electronic Propertiesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林金福,劉韋志,顏誠廷
dc.subject.keyword吡,咯,次甲基共軛高分子,電子結構,zh_TW
dc.subject.keywordpyrrole,methine,conjugated polymer,electronic properties,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved