Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31733
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor廖永豐(Yung-Feng Liao)
dc.contributor.authorLan-Hsin Kuoen
dc.contributor.author郭嵐忻zh_TW
dc.date.accessioned2021-06-13T03:18:45Z-
dc.date.available2008-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationAggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, 745-756.
Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., et al. (2000). Inflammation and Alzheimer's disease. Neurobiol Aging 21, 383-421.
Anderson, A. J., Su, J. H., and Cotman, C. W. (1996). DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16, 1710-1719.
Auron, P. E. (1998). The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev 9, 221-237.
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J., and Landreth, G. E. (2003). A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23, 2665-2674.
Barnes, P. J., and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336, 1066-1071.
Baud, V., and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11, 372-377.
Baud, V., Liu, Z. G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M. (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13, 1297-1308.
Baumann, K., Paganetti, P. A., Sturchler-Pierrat, C., Wong, C., Hartmann, H., Cescato, R., Frey, P., Yankner, B. A., Sommer, B., and Staufenbiel, M. (1997). Distinct processing of endogenous and overexpressed recombinant presenilin 1. Neurobiol Aging 18, 181-189.
Bennett, B. L., Sasaki, D. T., Murray, B. W., O'Leary, E. C., Sakata, S. T., Xu, W., Leisten, J. C., Motiwala, A., Pierce, S., Satoh, Y., et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98, 13681-13686.
Blasko, I., Marx, F., Steiner, E., Hartmann, T., and Grubeck-Loebenstein, B. (1999). TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. Faseb J 13, 63-68.
Blasko, I., Veerhuis, R., Stampfer-Kountchev, M., Saurwein-Teissl, M., Eikelenboom, P., and Grubeck-Loebenstein, B. (2000). Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 7, 682-689.
Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuther, K., Selkoe, D. J., and Haass, C. (1998). The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J Biol Chem 273, 3205-3211.
Carro, E., Trejo, J. L., Gomez-Isla, T., LeRoith, D., and Torres-Aleman, I. (2002). Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8, 1390-1397.
Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40.
Cirrito, J. R., and Holtzman, D. M. (2003). Amyloid beta and Alzheimer disease therapeutics: the devil may be in the details. J Clin Invest 112, 321-323.
Combs, C. K., Karlo, J. C., Kao, S. C., and Landreth, G. E. (2001). beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21, 1179-1188.
De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518-522.
De Strooper, B., Beullens, M., Contreras, B., Levesque, L., Craessaerts, K., Cordell, B., Moechars, D., Bollen, M., Fraser, P., George-Hyslop, P. S., and Van Leuven, F. (1997). Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer's disease-associated presenilins. J Biol Chem 272, 3590-3598.
De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., and Van Leuven, F. (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387-390.
Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., and Davis, R. J. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267, 682-685.
Dickens, M., Rogers, J. S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J. R., Greenberg, M. E., Sawyers, C. L., and Davis, R. J. (1997). A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693-696.
Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003). Reconstitution of gamma-secretase activity. Nat Cell Biol 5, 486-488.
Esler, W. P., and Wolfe, M. S. (2001). A portrait of Alzheimer secretases--new features and familiar faces. Science 293, 1449-1454.
Evin, G., Canterford, L. D., Hoke, D. E., Sharples, R. A., Culvenor, J. G., and Masters, C. L. (2005). Transition-state analogue gamma-secretase inhibitors stabilize a 900 kDa presenilin/nicastrin complex. Biochemistry 44, 4332-4341.
Fluhrer, R., Friedlein, A., Haass, C., and Walter, J. (2004). Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J Biol Chem 279, 1585-1593.
Fraering, P. C., Ye, W., Strub, J. M., Dolios, G., LaVoie, M. J., Ostaszewski, B. L., van Dorsselaer, A., Wang, R., Selkoe, D. J., and Wolfe, M. S. (2004). Purification and characterization of the human gamma-secretase complex. Biochemistry 43, 9774-9789.
Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., Nicoll, M., Maxwell, M., Hai, B., Ellis, M. C., et al. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3, 85-97.
Galcheva-Gargova, Z., Derijard, B., Wu, I. H., and Davis, R. J. (1994). An osmosensing signal transduction pathway in mammalian cells. Science 265, 806-808.
Gianni, D., Zambrano, N., Bimonte, M., Minopoli, G., Mercken, L., Talamo, F., Scaloni, A., and Russo, T. (2003). Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer's amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 278, 9290-9297.
Hanada, T., and Yoshimura, A. (2002). Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13, 413-421.
Henricson, A., Kall, L., and Sonnhammer, E. L. (2005). A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence. Febs J 272, 2727-2733.
Hoeflich, K. P., Yeh, W. C., Yao, Z., Mak, T. W., and Woodgett, J. R. (1999). Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1). Oncogene 18, 5814-5820.
Huang, C., Ma, W. Y., Maxiner, A., Sun, Y., and Dong, Z. (1999). p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274, 12229-12235.
in t' Veld, B. A., Ruitenberg, A., Hofman, A., Launer, L. J., van Duijn, C. M., Stijnen, T., Breteler, M. M., and Stricker, B. H. (2001). Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N Engl J Med 345, 1515-1521.
Inomata, H., Nakamura, Y., Hayakawa, A., Takata, H., Suzuki, T., Miyazawa, K., and Kitamura, N. (2003). A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem 278, 22946-22955.
Janssens, S., and Beyaert, R. (2003). Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11, 293-302.
Kao, S. C., Krichevsky, A. M., Kosik, K. S., and Tsai, L. H. (2004). BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 279, 1942-1949.
Kihiko, M. E., Tucker, H. M., Rydel, R. E., and Estus, S. (1999). c-Jun contributes to amyloid beta-induced neuronal apoptosis but is not necessary for amyloid beta-induced c-jun induction. J Neurochem 73, 2609-2612.
Kim, J. W., Chang, T. S., Lee, J. E., Huh, S. H., Yeon, S. W., Yang, W. S., Joe, C. O., Mook-Jung, I., Tanzi, R. E., Kim, T. W., and Choi, E. J. (2001). Negative regulation of the SAPK/JNK signaling pathway by presenilin 1. J Cell Biol 153, 457-463.
Kim, J. W., Kim, M. J., Kim, K. J., Yun, H. J., Chae, J. S., Hwang, S. G., Chang, T. S., Park, H. S., Lee, K. W., Han, P. L., et al. (2005). Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc Natl Acad Sci U S A 102, 14308-14313.
Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., and Selkoe, D. J. (2003). Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100, 6382-6387.
Kirschenbaum, F., Hsu, S. C., Cordell, B., and McCarthy, J. V. (2001). Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J Biol Chem 276, 30701-30707.
Kirschenbaum, F., Hsu, S. C., Cordell, B., and McCarthy, J. V. (2001). Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signaling. J Biol Chem 276, 7366-7375.
Kogel, D., Schomburg, R., Copanaki, E., and Prehn, J. H. (2005). Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell Death Differ 12, 1-9.
Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., and Woodgett, J. R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156-160.
Lau, K. F., Howlett, D. R., Kesavapany, S., Standen, C. L., Dingwall, C., McLoughlin, D. M., and Miller, C. C. (2002). Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol Cell Neurosci 20, 13-20.
Laudon, H., Hansson, E. M., Melen, K., Bergman, A., Farmery, M. R., Winblad, B., Lendahl, U., von Heijne, G., and Naslund, J. (2005). A nine-transmembrane domain topology for presenilin 1. J Biol Chem 280, 35352-35360.
LaVoie, M. J., Fraering, P. C., Ostaszewski, B. L., Ye, W., Kimberly, W. T., Wolfe, M. S., and Selkoe, D. J. (2003). Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem 278, 37213-37222.
Leicht, M., Marx, G., Karbach, D., Gekle, M., Kohler, T., and Zimmer, H. G. (2003). Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Mol Cell Biochem 251, 119-126.
Li, X., and Greenwald, I. (1998). Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc Natl Acad Sci U S A 95, 7109-7114.
Liao, Y. F., Wang, B. J., Cheng, H. T., Kuo, L. H., and Wolfe, M. S. (2004). Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279, 49523-49532.
Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., Ashe, K. H., Frautschy, S. A., and Cole, G. M. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci 20, 5709-5714.
Lim, G. P., Yang, F., Chu, T., Gahtan, E., Ubeda, O., Beech, W., Overmier, J. B., Hsiao-Ashec, K., Frautschy, S. A., and Cole, G. M. (2001). Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 22, 983-991.
MacGibbon, G. A., Lawlor, P. A., Walton, M., Sirimanne, E., Faull, R. L., Synek, B., Mee, E., Connor, B., and Dragunow, M. (1997). Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp Neurol 147, 316-332.
Matsuda, S., Matsuda, Y., and D'Adamio, L. (2003). Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem 278, 38601-38606.
Matsuda, S., Yasukawa, T., Homma, Y., Ito, Y., Niikura, T., Hiraki, T., Hirai, S., Ohno, S., Kita, Y., Kawasumi, M., et al. (2001). c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J Neurosci 21, 6597-6607.
McGeer, P. L., Schulzer, M., and McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology 47, 425-432.
Mercken, M., Takahashi, H., Honda, T., Sato, K., Murayama, M., Nakazato, Y., Noguchi, K., Imahori, K., and Takashima, A. (1996). Characterization of human presenilin 1 using N-terminal specific monoclonal antibodies: Evidence that Alzheimer mutations affect proteolytic processing. FEBS Lett 389, 297-303.
Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R. J., Johnson, G. L., and Karin, M. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266, 1719-1723.
Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389-395.
Ratovitski, T., Slunt, H. H., Thinakaran, G., Price, D. L., Sisodia, S. S., and Borchelt, D. R. (1997). Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J Biol Chem 272, 24536-24541.
Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R., and Anderton, B. H. (2000). Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74, 1587-1595.
Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A., and Anderton, B. H. (1997). Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein. J Neurochem 68, 1736-1744.
Rich, J. B., Rasmusson, D. X., Folstein, M. F., Carson, K. A., Kawas, C., and Brandt, J. (1995). Nonsteroidal anti-inflammatory drugs in Alzheimer's disease. Neurology 45, 51-55.
Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and et al. (1993). Clinical trial of indomethacin in Alzheimer's disease. Neurology 43, 1609-1611.
Scheinfeld, M. H., Roncarati, R., Vito, P., Lopez, P. A., Abdallah, M., and D'Adamio, L. (2002). Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). J Biol Chem 277, 3767-3775.
Seeger, M., Nordstedt, C., Petanceska, S., Kovacs, D. M., Gouras, G. K., Hahne, S., Fraser, P., Levesque, L., Czernik, A. J., George-Hyslop, P. S., et al. (1997). Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc Natl Acad Sci U S A 94, 5090-5094.
Selkoe, D. J. (2000). The genetics and molecular pathology of Alzheimer's disease: roles of amyloid and the presenilins. Neurol Clin 18, 903-922.
Selkoe, D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81, 741-766.
Shoji, M., Iwakami, N., Takeuchi, S., Waragai, M., Suzuki, M., Kanazawa, I., Lippa, C. F., Ono, S., and Okazawa, H. (2000). JNK activation is associated with intracellular beta-amyloid accumulation. Brain Res Mol Brain Res 85, 221-233.
Sluss, H. K., Barrett, T., Derijard, B., and Davis, R. J. (1994). Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol Cell Biol 14, 8376-8384.
Steiner, H., Capell, A., Pesold, B., Citron, M., Kloetzel, P. M., Selkoe, D. J., Romig, H., Mendla, K., and Haass, C. (1998). Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 273, 32322-32331.
Stewart, W. F., Kawas, C., Corrada, M., and Metter, E. J. (1997). Risk of Alzheimer's disease and duration of NSAID use. Neurology 48, 626-632.
Struhl, G., and Greenwald, I. (1999). Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522-525.
Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., Thinakaran, G., and Iwatsubo, T. (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438-441.
Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M. A., Danni, O., Smith, M. A., Perry, G., and Tabaton, M. (2002). Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10, 279-288.
Tamagno, E., Parola, M., Bardini, P., Piccini, A., Borghi, R., Guglielmotto, M., Santoro, G., Davit, A., Danni, O., Smith, M. A., et al. (2005). Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92, 628-636.
Tan, J., Town, T., Paris, D., Mori, T., Suo, Z., Crawford, F., Mattson, M. P., Flavell, R. A., and Mullan, M. (1999). Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286, 2352-2355.
Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002). Interaction of Alzheimer's beta -amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem 277, 20070-20078.
Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., et al. (1996). Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181-190.
Tournier, C., Dong, C., Turner, T. K., Jones, S. N., Flavell, R. A., and Davis, R. J. (2001). MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15, 1419-1426.
Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T., and Davis, R. J. (1999). The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 19, 1569-1581.
Vassar, R., and Citron, M. (2000). Abeta-generating enzymes: recent advances in beta- and gamma-secretase research. Neuron 27, 419-422.
Vingtdeux, V., Hamdane, M., Gompel, M., Begard, S., Drobecq, H., Ghestem, A., Grosjean, M. E., Kostanjevecki, V., Grognet, P., Vanmechelen, E., et al. (2005). Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiol Dis 20, 625-637.
Walter, J., Grunberg, J., Capell, A., Pesold, B., Schindzielorz, A., Citron, M., Mendla, K., George-Hyslop, P. S., Multhaup, G., Selkoe, D. J., and Haass, C. (1997). Proteolytic processing of the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc Natl Acad Sci U S A 94, 5349-5354.
Walter, J., Grunberg, J., Schindzielorz, A., and Haass, C. (1998). Proteolytic fragments of the Alzheimer's disease associated presenilins-1 and -2 are phosphorylated in vivo by distinct cellular mechanisms. Biochemistry 37, 5961-5967.
Weggen, S., Eriksen, J. L., Das, P., Sagi, S. A., Wang, R., Pietrzik, C. U., Findlay, K. A., Smith, T. E., Murphy, M. P., Bulter, T., et al. (2001). A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414, 212-216.
Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A., and Allis, C. D. (1999). Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99-109.
Whitmarsh, A. J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R. J. (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281, 1671-1674.
Wolfe, M. S., De Los Angeles, J., Miller, D. D., Xia, W., and Selkoe, D. J. (1999). Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 38, 11223-11230.
Wolfe, M. S., and Selkoe, D. J. (2002). Biochemistry. Intramembrane proteases--mixing oil and water. Science 296, 2156-2157.
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513-517.
Wyss-Coray, T., Lin, C., Yan, F., Yu, G. Q., Rohde, M., McConlogue, L., Masliah, E., and Mucke, L. (2001). TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7, 612-618.
Ye, Y., Lukinova, N., and Fortini, M. E. (1999). Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525-529.
Yu, G., Chen, F., Levesque, G., Nishimura, M., Zhang, D. M., Levesque, L., Rogaeva, E., Xu, D., Liang, Y., Duthie, M., et al. (1998). The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J Biol Chem 273, 16470-16475.
Zhu, X., Castellani, R. J., Takeda, A., Nunomura, A., Atwood, C. S., Perry, G., and Smith, M. A. (2001). Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech Ageing Dev 123, 39-46.
Zhu, X., Raina, A. K., Rottkamp, C. A., Aliev, G., Perry, G., Boux, H., and Smith, M. A. (2001). Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem 76, 435-441.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31733-
dc.description.abstractAmyloid-β precursor protein (APP)經過β-secretase和γ-secretase相繼作用後產生Amyloid-β (Aβ),是阿茲海默症致病機制中非常重要的一步。γ-secretase是負責在APP的transmembrane domain執行最後一步的蛋白水解反應,許多研究都認為這是阿茲海默症致病機制中最關鍵的ㄧ步。近來已有證據顯示γ-secretase為一個由presenilin (PS)、nicastrin (NCT)、Aph-1和Pen-2所組成的多蛋白複合體,且此四種蛋白的完善組合為其酵素活性的充要條件。先前的證據已指出一些cytokines能夠刺激γ-secretase的活性,其中又以tumer necrosis factor-α (TNF-α)最為有效。在最初的研究中,我們發現TNF-α透過JNK-dependent MAPK pathway活化γ-secretase,我們接著想看看cytokines對於γ-secretase的調控是否來自於JNK對於此蛋白水解酶的磷酸化所做的改變。為了提高對於γ-secretase磷酸化改變的解析度,我們建立了一細胞株大量表現有His-tag的NCT,以及正常的PS1、Aph-1、Pen-2和APP,因此可以用HIS-SelectedTM Cobalt Affinity Gel有效地純化整個γ-secretase複合體。在此,我們提出一些證據顯示TNF-α透過JNK促進PS1和NCT上的serine/threonine的磷酸化程度,同時活化γ-secretase;若用JNK的抑制劑─SP600125抑制JNK的活性,則會減低TNF-α對於PS1和NCT所引起的磷酸化。再者,活化的JNK能夠與γ-secretase一起被純化出來,並且活化的JNK可以在體外實驗中促進PS1和NCT的磷酸化。我們接著在PS1上找到一可能由JNK所調控的磷酸化位置,擁有此PS1突變的細胞表現出降低的γ-secretase活性。由我們的發現可以推論在TNF-α所引起γ-secretase的磷酸化中,JNK為其細胞中一重要的調停者,可能藉由直接與γ-secreatase相互作用來達到調控其鄰酸化程度與活性的目的。zh_TW
dc.description.abstractAmyloid-β (Aβ), which is generated through β- and γ-secretase-mediated proteolysis of amyloid precursor protein (APP), plays a critical role in the pathogenesis of Alzheimer’s disease (AD). γ-Secretase which cleaves Amyloid-β precursor protein (APP) in its transmembrane domain catalyzes the final proteolytic step in the generation of Aβ. Recent evidence has demonstrated that γ-secretase is a multiprotein complex composed of presenilin (PS), nicastrin (NCT), Aph-1 and Pen-2 and that all four proteins are essential and sufficient for the proteolytic activity of γ-secretase. Previous evidence has shown that several cytokines can stimulate γ-secretase activity, and tumor necrosis factor-α (TNF-α) is the most potent one. In this study, we initially show that TNF-α activates γ-secretase via a JNK-dependent MAPK pathway. We then seek to determine whether this cytokine-elicited regulation of γ-secretase is due to alteration in the JNK-dependent phosphorylation of this protease. To improve the efficiency on visualizing the alteration in phosphorylation of γ-secretase, we have generated a CHO-derived cell line (γNCT-36) that stably co-expresses a His-tagged NCT along with PS1, Aph-1, Pen-2 and APP. The complexes of γ-secretase can then be efficiently pulled down by HIS-SelectedTM Cobalt Affinity Gel through the affinity of His-tagged NCT. Here, we present evidence that TNF-α elicits JNK-dependent serine/threonine phosphorylation of PS1 and NCT in γNCT-36 cells, concomitant with the stimulation of γ-secretase activity. Blocking JNK activity with a potent JNK inhibitor (SP600125) can reduce TNF-α-triggered phosphorylation of PS1 and NCT. Consistently, the activated JNK can be co-purified with γ-secretase complexes, and promotes the phosphorylation of PS1 and NCT in an in vitro kinase assay. A putative JNK-induced phosphorylation site of PS1 has been identified, and cells harboring this PS1 mutant exhibit decreased γ-secretase activity. Our findings suggest that JNK is an intracellular mediator of TNF-α-elicited phosphorylation of γ-secretase and may directly interact with γ-secretase to modulate its phosphorylation levels and hence its activity.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:18:45Z (GMT). No. of bitstreams: 1
ntu-95-R93b41004-1.pdf: 1639290 bytes, checksum: c0ed29ce1b2462a7a8154647e20bdf09 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 1
ABSTRACT 2
CONTENTS 4
APPENDIX OF TABLE 6
APPENDIX OF FIGURE 6
INTRODUCTION 7
MATERIAL AND METHODS 14
RESULT 22
DISCUSSION 30
REFERENCE 38
TABLE 51
FIGURE 52
dc.language.isoen
dc.subject老年癡呆症zh_TW
dc.subject阿茲海默氏症zh_TW
dc.subjectTNF-alphaen
dc.subjectJNKen
dc.subjectgamma-secretaseen
dc.titleTNF-α經由活化JNK MAPK pathway增強γ-secretase活性分子機制之研究zh_TW
dc.titleTNF-α enhances serine/threonine phosphorylation of γ-secretase via a JNK-dependent MAPK pathwayen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊宏(Jiun-Hong Chen),黃偉邦(Wei-Pang Huang)
dc.subject.keyword阿茲海默氏症,老年癡呆症,zh_TW
dc.subject.keywordgamma-secretase,JNK,TNF-alpha,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
Appears in Collections:動物學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
1.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved