請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31703完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文 | |
| dc.contributor.author | Cheng-Jung Chen | en |
| dc.contributor.author | 陳政榮 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:17:59Z | - |
| dc.date.available | 2007-08-01 | |
| dc.date.copyright | 2006-08-01 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-29 | |
| dc.identifier.citation | [1] V. V. Voronkov, V. M. Pankov, Sov. Phys. Crystallogr. 20 (1975) 697.
[2] B. Cockayne, J. M. Roslington, A. W. Vere, J. Materials Sci. 8 (1973) 382. [3] A. G. Petrosyan, Kh. S. Bagdasarov, J.Crystal Growth 34 (1976) 110. [4] C. Herring, Phys. Rev. 82 (1951) 87. [5] B. Cockayne, M. Chesswas, D. B. Gasson, J. Materials Sci. 3 (1968) 224. [6] B. Cockayne, M. Chesswas, D. B. Gasson, J. Materials Sci. 4 (1969) 450. [7] X. Xu, J. Liao, B. Shen, P. Shao, X. Chen, C. He, J. Crystal Growth 133 (1993) 267. [8] B. Cockayne, J. Crystal growth 3 (1968) 60. [9] D. T. J. Hurle, J. Crystal growth 147 (1995) 239. [10] J. Amon, F. Dumke, G. Müller, J. Crystal growth 187 (1998) 1. [11] H. Chung, M. Dudley, D. J. Larson, Jr., D. T. J. Hurle, D. F. Bliss, V. Prasad, J. Crystal growth 187 (1968) 9. [12] J. A. Burton, R.C. Prim and W. P. Slichter, J. chem. Phys. 21 (1953) 1987. [13] A. G.. Ostrogorsky and G. Muller, J. crystal growth 121 (1992) 587. [14] K. F. Hulme, J.B. Mullin, J. Electron. Control 3 (1957) 160. [15] J. B. Mullin, K. F. Hulme, J. Phys. Chem. Solids 17 (1960) 1. [16] A. J. Strauss, J. Appl. Phys. 30 (1959) 559. [17] D. T. J. Hurle, P. Rudolph, J. Crystal Growth 264 (2004) 550. [18] Y. Liu, A. Virozub, S. Brandon, J. Crystal Growth 205 (1999) 333. [19] C. W. Lan, C. Y. Tu, J. Crystal Growth 233 (2001) 523. [20] Y. Ma, L. L. Zheng, D. J. Larson Jr., J.Crystal Growth 266 (2004) 257. [21] O. Weinstein, S. Brandon, J. Crystal Growth 284 (2005) 235. [22] G.. Wulff, Z. Krist. 34 (1901) 449. [23] K. A. Jackson, Liquid Metals and Solidification, Amer. Soc. Metals, 1958, p.174. [24] K. A. Jackson, Growth and Perfection of Crystals, Editor R. H. Doremus et al., Wiley, New York, 1958, p.319. [25] 閔乃本, 晶體生長的物理基礎, 上海科學技術出版社,1982. [26] K. A. Jackson, Crystal Growth and Characterization, Editor R. Ueda and J. B. Mullin, North Holland, New York, 1975 p. 21. [27] W. A. Tiller, The Art and Science of Growing Crystals, Editor J. J. Gilman, Wiley, New York, 1963, p.276. [28] J. C. Brice, J.Crystal Growth 6 (1970) 205. [29] O. Weinstein, S. Brandon, J. Crystal Growth 268 (2004) 299. [30] D. Turnbull, Thermodynamics in Metallurgy, Amer. Soc. Metals, Metals Park, Ohio, 1949. [31] V. V. Voronkov, Crystals Grown, Properties, and Applications, Vol. 9, Editor A. A. Chernov, Modern Theory of Crystal Growth I Springer, Berlin, Heidelberg, New York, 1983. [32] M. Volmer, Kinetik de Phasenbildung, Steinkopff, Dresden and Leipzig, 1939. [33] R. Becker, W. Doring, Ann. Phys. 24 (1935) 719. [34] M. Watanabe, S. Takasu, J. Crystal Growth 24/25 (1974) 280. [35] X. Xu, J. Liao, B. Shen, P. Shao, X. Chen, C. He, J. Crystal Growth 133 (1993) 267. [36] K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, J.Chem. Soc. J. Chem. Ind. Chem. 10 (1981) 1630. [37] T. Abe, J. Crystal Growth 24/25 (1974) 463. [38] S. Li, Q. Xiang, D. Wang, Kang L. Wang, J. Crystal Growth 157 (1995) 185. [39] G.. Russo, P. Smereka, J. Sci. Comput. 21 (6) (2000) 2073. [40] T. Uehara, R. F. Sekerka, J. Crystal Growth 254 (2003) 251. [41] I. D. Matukov, D. S. Kalinin, M. V. Bogdanov, S. Yu. Karpov, D. Kh. Ofengeim, M. S. Ramm, J. S. Barash, E. N. Mokhov, A. D. Roenkov, Yu. A. Vodakov, M. G. Ramm, H. Helava, Yu. N. Makarov, J. Crystal Growth 266 (2004) 313. [42] O. Weinstein, S. Brandon, J. Crystal Growth 270 (2004) 232. [43] C. W. Lan, C. Y. Tu, Y. F. Lee, Int. J. Heat Mass Transfer 46 (9) (2003) 1629. [44] M. P. Marchenko, I. V. Fryazinov, Crystallography Reports 50 (6) (2005) 1114. [45] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (2nd ed, Vol.6, Pergamon Press, Elmsford, New York 1987), p.217. [46] M. F. Modest, Radiative Heat Transfer, McGraw-Hill, New York, 1993, p.487. [47] M. C. Liang, P.h.D thesis, (1999) [48] J. H. Chian, Master thesis, (2000) [49] C. W. Lan, M. C. Liang, J. Comp. Phys. 152 (1999) 55. [50] W. Bardsley, F. C. Frank, G. W. Green, D. T. J. Hurle, J.Crystal Growth 23(1974) 341. [51] K. M. Beatty, K. A. Jackson, J. Crystal Growth 211 (2000) 13 [52] V. V. Voronkov, Soviet Physics Crystallography 17(5) ( (1973) 807 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31703 | - |
| dc.description.abstract | 晶體生長的過程中,奇異面的形成會影響單晶品質。此外,Hulme 與 Mullin發現奇異面形成對於有掺雜的晶體會使得有效偏析係數在奇異面大於非奇異面(J. B. Mullin, K. F. Hulme, J. Phys. Chem. Solids 17 (1960) 1.)。因此本文以界面動力學為基礎,探討以垂直布氏法生長單晶之奇異面形成。模擬三維非穩態奇異面{111}、{211}、{110}的三維非穩態計算,並且對奇異面形成而影響晶體濃度分佈作討論。
我們採用兩種不同的處理方法來模擬奇異面生長的動態情形,第一種為假設奇異面在巨觀上為一平坦的表面,用幾何上的處理方法使得面上的最大過冷度滿足界面動力學關係式,我們稱為Geometric model;另一種方法是考慮多種與奇異面生長有關的動力學參數,利用界面動力學的理論將界面移動速度作離散而獲得奇異面,我們稱為Geometric model。此外,我們將不同模式的非穩態奇異面模擬結果的差異作比較。 此外,我們探討奇異面生長造成晶體濃度分佈的影響,同時藉由實驗所觀察到奇異面上的有效偏析係數不同於粗糙面所帶來的效應,進行非穩態的奇異面模擬。本文最後成功地模擬出多重奇異面的結果,可以更真實地預測多種奇異面的生長,使得模擬結果更接近實際的情形,更能進一步地探討奇異面影響晶體濃度的效應。 | zh_TW |
| dc.description.abstract | Facet formation is a common phenomenon observed in melt or vapor growth. Because of that the segregation on facets occurs in a manner and the segregation coefficient can differ dramatically from that on a rough surface, the facet formation will effect the dopant concentration field in the grown crystal. Three-dimensional (3D) transient simulation of facet an its coupled heat flow and segregation in Bridgman growth of oxide crystals is presented. We used two kind of method to treat the interface which facet format on, and compared the difference between them. Furthermore, the simulation successfully reveals experimental observations, and the effects of crystal growth surroundings on the facet sizes are also investigated. Besides of the simulation of single kind facet on surface, the results of multi-facets are also presented. We also evaluate the dopant concentration field in the grown crystal when the facets are at different crystallographic plane. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:17:59Z (GMT). No. of bitstreams: 1 ntu-95-R93524022-1.pdf: 5075949 bytes, checksum: 48e04e3afed227eb4ae0df1028bdc048 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………….I
英文摘要………………………………………………………………... II 誌 謝……………………………………………………………….. III 目 錄……………………………………………………………….....IV 符號說明………………………………………………………….……VII 圖目錄……………………………………………………………........... X 表目錄………………………………………………………………......XIV 第一章 緒論……………………………………………………………... 1 1-1 前言……………………………………………………………… 1 1-2 文獻回顧………………………………………………………....6 1-2.1 奇異面之生成概述…………………….………………….. 6 1-2.2 奇異面形成之動力學分析………………………………. 11 1-2.3 奇異面影響晶體品質之效應……………………………. 15 1-3 研究動機……………………………………………………….. 19 第二章 物理模式與數值方法……………………………………….... 22 2-1 主導方程式與邊界條件…………...…………........................... 22 2-2 數值方法……………………………………………………….. 29 2-3 奇異面計算方法……………………………………………….. 32 2-3.1 擬穩態奇異面計算………………...…………………….. 32 2-3.2 Geometric model非穩態奇異面計算…………………….35 2-3.3 Kinetic model 非穩態奇異面計算……………………. 47 第三章 結果與討論…………………………………………………… 43 3-1 擬穩態之奇異面結果分析……………………………………..43 3-2 Geometric model的非穩態奇異面結果分析……………….....47 3-2.1 Geometric model 模擬結果分析……………………….47 3-2.2 網格粗細及時間間隔對結果的影響………………….. 50 3-2.3 不同晶向的奇異面模擬結果分析……………………... 54 3-2.4 奇異面形成對有效偏析係數及濃度分佈的影響…….. 58 3-2.5 奇異面形成對晶體濃度分佈的影響………………….. 60 3-2.6 晶體內輻射效應對奇異面的影響…………………….. 66 3-2.7 動力學參數對奇異面的影響………………………….. 69 3-3 Kinetic model的非穩態奇異面結果分析…………………… 74 3-3.1 Kinetic model 模擬結果分析…………………………. 74 3-3.2 Kinetic model與Geometric model比較…………….... 78 3-3.3 非差排奇異面與差排奇異面之生長比較…………...... 84 3-4 多重奇異面生長模擬…………………………….…………... 87 第四章 結論…………………………………………………………… 91 參考文獻……………………………………………………………….. 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奇異面 | zh_TW |
| dc.subject | 有效偏析係數 | zh_TW |
| dc.subject | 布氏法 | zh_TW |
| dc.subject | 三維非穩態模擬 | zh_TW |
| dc.subject | 三維動態模擬 | zh_TW |
| dc.subject | facet | en |
| dc.subject | three dimensional transient simulation | en |
| dc.subject | Bridgman | en |
| dc.subject | segregation coefficient | en |
| dc.title | 布氏法晶體生長之奇異面
生成之三維動態模擬 | zh_TW |
| dc.title | Three-Dimensional Transient Simulation of Facet Formation and Its Coupled Heat Flow and Segregation in Bridgman Crystal Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志臣,洪儒生 | |
| dc.subject.keyword | 奇異面,布氏法,有效偏析係數,三維動態模擬,三維非穩態模擬, | zh_TW |
| dc.subject.keyword | facet,segregation coefficient,Bridgman,three dimensional transient simulation, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
