Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31703
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文
dc.contributor.authorCheng-Jung Chenen
dc.contributor.author陳政榮zh_TW
dc.date.accessioned2021-06-13T03:17:59Z-
dc.date.available2007-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citation[1] V. V. Voronkov, V. M. Pankov, Sov. Phys. Crystallogr. 20 (1975) 697.
[2] B. Cockayne, J. M. Roslington, A. W. Vere, J. Materials Sci. 8 (1973) 382.
[3] A. G. Petrosyan, Kh. S. Bagdasarov, J.Crystal Growth 34 (1976) 110.
[4] C. Herring, Phys. Rev. 82 (1951) 87.
[5] B. Cockayne, M. Chesswas, D. B. Gasson, J. Materials Sci. 3 (1968) 224.
[6] B. Cockayne, M. Chesswas, D. B. Gasson, J. Materials Sci. 4 (1969) 450.
[7] X. Xu, J. Liao, B. Shen, P. Shao, X. Chen, C. He, J. Crystal Growth 133 (1993) 267.
[8] B. Cockayne, J. Crystal growth 3 (1968) 60.
[9] D. T. J. Hurle, J. Crystal growth 147 (1995) 239.
[10] J. Amon, F. Dumke, G. Müller, J. Crystal growth 187 (1998) 1.
[11] H. Chung, M. Dudley, D. J. Larson, Jr., D. T. J. Hurle, D. F. Bliss, V. Prasad, J. Crystal growth 187 (1968) 9.
[12] J. A. Burton, R.C. Prim and W. P. Slichter, J. chem. Phys. 21 (1953) 1987.
[13] A. G.. Ostrogorsky and G. Muller, J. crystal growth 121 (1992) 587.
[14] K. F. Hulme, J.B. Mullin, J. Electron. Control 3 (1957) 160.
[15] J. B. Mullin, K. F. Hulme, J. Phys. Chem. Solids 17 (1960) 1.
[16] A. J. Strauss, J. Appl. Phys. 30 (1959) 559.
[17] D. T. J. Hurle, P. Rudolph, J. Crystal Growth 264 (2004) 550.
[18] Y. Liu, A. Virozub, S. Brandon, J. Crystal Growth 205 (1999) 333.
[19] C. W. Lan, C. Y. Tu, J. Crystal Growth 233 (2001) 523.
[20] Y. Ma, L. L. Zheng, D. J. Larson Jr., J.Crystal Growth 266 (2004) 257.
[21] O. Weinstein, S. Brandon, J. Crystal Growth 284 (2005) 235.
[22] G.. Wulff, Z. Krist. 34 (1901) 449.
[23] K. A. Jackson, Liquid Metals and Solidification, Amer. Soc. Metals, 1958, p.174.
[24] K. A. Jackson, Growth and Perfection of Crystals, Editor R. H. Doremus et al., Wiley, New York, 1958, p.319.
[25] 閔乃本, 晶體生長的物理基礎, 上海科學技術出版社,1982.
[26] K. A. Jackson, Crystal Growth and Characterization, Editor R. Ueda and J. B. Mullin, North Holland, New York, 1975 p. 21.
[27] W. A. Tiller, The Art and Science of Growing Crystals, Editor J. J. Gilman, Wiley, New York, 1963, p.276.
[28] J. C. Brice, J.Crystal Growth 6 (1970) 205.
[29] O. Weinstein, S. Brandon, J. Crystal Growth 268 (2004) 299.
[30] D. Turnbull, Thermodynamics in Metallurgy, Amer. Soc. Metals, Metals Park, Ohio, 1949.
[31] V. V. Voronkov, Crystals Grown, Properties, and Applications, Vol. 9, Editor A. A. Chernov, Modern Theory of Crystal Growth I Springer, Berlin, Heidelberg, New York, 1983.
[32] M. Volmer, Kinetik de Phasenbildung, Steinkopff, Dresden and Leipzig, 1939.
[33] R. Becker, W. Doring, Ann. Phys. 24 (1935) 719.
[34] M. Watanabe, S. Takasu, J. Crystal Growth 24/25 (1974) 280.
[35] X. Xu, J. Liao, B. Shen, P. Shao, X. Chen, C. He, J. Crystal Growth 133 (1993) 267.
[36] K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, J.Chem. Soc. J. Chem. Ind. Chem. 10 (1981) 1630.
[37] T. Abe, J. Crystal Growth 24/25 (1974) 463.
[38] S. Li, Q. Xiang, D. Wang, Kang L. Wang, J. Crystal Growth 157 (1995) 185.
[39] G.. Russo, P. Smereka, J. Sci. Comput. 21 (6) (2000) 2073.
[40] T. Uehara, R. F. Sekerka, J. Crystal Growth 254 (2003) 251.
[41] I. D. Matukov, D. S. Kalinin, M. V. Bogdanov, S. Yu. Karpov, D. Kh. Ofengeim, M. S. Ramm, J. S. Barash, E. N. Mokhov, A. D. Roenkov, Yu. A. Vodakov, M. G. Ramm, H. Helava, Yu. N. Makarov, J. Crystal Growth 266 (2004) 313.
[42] O. Weinstein, S. Brandon, J. Crystal Growth 270 (2004) 232.
[43] C. W. Lan, C. Y. Tu, Y. F. Lee, Int. J. Heat Mass Transfer 46 (9) (2003) 1629.
[44] M. P. Marchenko, I. V. Fryazinov, Crystallography Reports 50 (6) (2005) 1114.
[45] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (2nd ed, Vol.6, Pergamon Press, Elmsford, New York 1987), p.217.
[46] M. F. Modest, Radiative Heat Transfer, McGraw-Hill, New York, 1993, p.487.
[47] M. C. Liang, P.h.D thesis, (1999)
[48] J. H. Chian, Master thesis, (2000)
[49] C. W. Lan, M. C. Liang, J. Comp. Phys. 152 (1999) 55.
[50] W. Bardsley, F. C. Frank, G. W. Green, D. T. J. Hurle, J.Crystal Growth 23(1974) 341.
[51] K. M. Beatty, K. A. Jackson, J. Crystal Growth 211 (2000) 13
[52] V. V. Voronkov, Soviet Physics Crystallography 17(5) ( (1973) 807
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31703-
dc.description.abstract晶體生長的過程中,奇異面的形成會影響單晶品質。此外,Hulme 與 Mullin發現奇異面形成對於有掺雜的晶體會使得有效偏析係數在奇異面大於非奇異面(J. B. Mullin, K. F. Hulme, J. Phys. Chem. Solids 17 (1960) 1.)。因此本文以界面動力學為基礎,探討以垂直布氏法生長單晶之奇異面形成。模擬三維非穩態奇異面{111}、{211}、{110}的三維非穩態計算,並且對奇異面形成而影響晶體濃度分佈作討論。
我們採用兩種不同的處理方法來模擬奇異面生長的動態情形,第一種為假設奇異面在巨觀上為一平坦的表面,用幾何上的處理方法使得面上的最大過冷度滿足界面動力學關係式,我們稱為Geometric model;另一種方法是考慮多種與奇異面生長有關的動力學參數,利用界面動力學的理論將界面移動速度作離散而獲得奇異面,我們稱為Geometric model。此外,我們將不同模式的非穩態奇異面模擬結果的差異作比較。
此外,我們探討奇異面生長造成晶體濃度分佈的影響,同時藉由實驗所觀察到奇異面上的有效偏析係數不同於粗糙面所帶來的效應,進行非穩態的奇異面模擬。本文最後成功地模擬出多重奇異面的結果,可以更真實地預測多種奇異面的生長,使得模擬結果更接近實際的情形,更能進一步地探討奇異面影響晶體濃度的效應。
zh_TW
dc.description.abstractFacet formation is a common phenomenon observed in melt or vapor growth. Because of that the segregation on facets occurs in a manner and the segregation coefficient can differ dramatically from that on a rough surface, the facet formation will effect the dopant concentration field in the grown crystal. Three-dimensional (3D) transient simulation of facet an its coupled heat flow and segregation in Bridgman growth of oxide crystals is presented. We used two kind of method to treat the interface which facet format on, and compared the difference between them. Furthermore, the simulation successfully reveals experimental observations, and the effects of crystal growth surroundings on the facet sizes are also investigated. Besides of the simulation of single kind facet on surface, the results of multi-facets are also presented. We also evaluate the dopant concentration field in the grown crystal when the facets are at different crystallographic plane.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:59Z (GMT). No. of bitstreams: 1
ntu-95-R93524022-1.pdf: 5075949 bytes, checksum: 48e04e3afed227eb4ae0df1028bdc048 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要………………………………………………………………….I
英文摘要………………………………………………………………... II
誌 謝……………………………………………………………….. III
目 錄……………………………………………………………….....IV
符號說明………………………………………………………….……VII
圖目錄……………………………………………………………........... X
表目錄………………………………………………………………......XIV
第一章 緒論……………………………………………………………... 1
1-1 前言……………………………………………………………… 1
1-2 文獻回顧………………………………………………………....6
1-2.1 奇異面之生成概述…………………….………………….. 6
1-2.2 奇異面形成之動力學分析………………………………. 11
1-2.3 奇異面影響晶體品質之效應……………………………. 15
1-3 研究動機……………………………………………………….. 19
第二章 物理模式與數值方法……………………………………….... 22
2-1 主導方程式與邊界條件…………...…………........................... 22
2-2 數值方法……………………………………………………….. 29
2-3 奇異面計算方法……………………………………………….. 32
2-3.1 擬穩態奇異面計算………………...…………………….. 32
2-3.2 Geometric model非穩態奇異面計算…………………….35
2-3.3 Kinetic model 非穩態奇異面計算……………………. 47
第三章 結果與討論…………………………………………………… 43
3-1 擬穩態之奇異面結果分析……………………………………..43
3-2 Geometric model的非穩態奇異面結果分析……………….....47
3-2.1 Geometric model 模擬結果分析……………………….47
3-2.2 網格粗細及時間間隔對結果的影響………………….. 50
3-2.3 不同晶向的奇異面模擬結果分析……………………... 54
3-2.4 奇異面形成對有效偏析係數及濃度分佈的影響…….. 58
3-2.5 奇異面形成對晶體濃度分佈的影響………………….. 60
3-2.6 晶體內輻射效應對奇異面的影響…………………….. 66
3-2.7 動力學參數對奇異面的影響………………………….. 69
3-3 Kinetic model的非穩態奇異面結果分析…………………… 74
3-3.1 Kinetic model 模擬結果分析…………………………. 74
3-3.2 Kinetic model與Geometric model比較…………….... 78
3-3.3 非差排奇異面與差排奇異面之生長比較…………...... 84
3-4 多重奇異面生長模擬…………………………….…………... 87
第四章 結論…………………………………………………………… 91
參考文獻……………………………………………………………….. 94
dc.language.isozh-TW
dc.subject奇異面zh_TW
dc.subject有效偏析係數zh_TW
dc.subject布氏法zh_TW
dc.subject三維非穩態模擬zh_TW
dc.subject三維動態模擬zh_TW
dc.subjectfaceten
dc.subjectthree dimensional transient simulationen
dc.subjectBridgmanen
dc.subjectsegregation coefficienten
dc.title布氏法晶體生長之奇異面
生成之三維動態模擬
zh_TW
dc.titleThree-Dimensional Transient Simulation of Facet Formation and Its Coupled Heat Flow and Segregation in Bridgman Crystal Growthen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志臣,洪儒生
dc.subject.keyword奇異面,布氏法,有效偏析係數,三維動態模擬,三維非穩態模擬,zh_TW
dc.subject.keywordfacet,segregation coefficient,Bridgman,three dimensional transient simulation,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved