請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 田光復 | |
dc.contributor.author | Chih-Wei Ho | en |
dc.contributor.author | 何志偉 | zh_TW |
dc.date.accessioned | 2021-06-13T03:17:47Z | - |
dc.date.available | 2007-08-01 | |
dc.date.copyright | 2006-08-01 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-28 | |
dc.identifier.citation | References:
[R1] Tucker, W. 'A Rigorous ODE Solver and Smale's 14th Problem.' Found. Comput. Math. 2, 53-117, 2002 [R2] Floris Tankens, “Detecting strange attractors in turbulence”, Lecture notes in mathematics, Vol.898 Dynamical systems and turbulence, 366-381, 1981 [R3] Tim Sauer, James A. Yorke and Martin Casdagli, “Embedology”, Journal of Statistical Physics, Springer Netherlands issue: Vol 65, Numbers 3-4 ,579 - 616 ,1991 [R4] Kathleen T. Alligood, Tim D. Sauer, James A. Yorke, “CHAOS An Introduction to Dynamical System”, Springer, 1996 [R5] Grassberger P. and Procaccia I. “Measuring the strangeness of strange attractors”, Physica D,9,189, 1983 [R6] Grassberger P. and Procaccia I. “Characterization of strange attractors” Phys. Rev. Lett., 50,346 1983a [R7] H. Kantz, T. Schreiber, “Nonlinear Time Series Analysis”, 2nd ed., Cambridge Univ. Press, 2004 [R8] Construct a mathematical atrium fibrillation theory based on electrophysiological property of a single and a group of cardio cell by mathematical chaos theory with computer simulation.NSC report 93-2321-B-002-005-B32(2/2) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31695 | - |
dc.description.abstract | When studying a physical phenomenon experimentally following the evolution of time, we measured and collected relevant one dimensional data and considered it correct even when the data appeared chaotic, we assumed the phenomenon is controlled by a strange attractor in an unknown phase space. This point of view induces the delay reconstruction method and embedding theorems due to Whitney, Takems, Sauer, Yorke, Casdagli. What follows then is to estimate the dimension of that strange attractor by Grassberger and Procaccia (D2 dimension) method in that embedded space with the dimension, or higher. Before doing so I tried the idea of making a description of the classical Cantor set which is defined only through logic and is an uncountable set while any time series is at most countable. Then I tried the same method to any relaxed Cantor set and “calculate” the dimension and demonstrate that time series description is applicable. Furthermore, from two sets of experimental data (1. Nuclear Magnetic Resonance (NMR) 2.Arrhythmias), they and we use the same algorithm to estimate the “fractal” dimension of the attractor of the dynamical system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:17:47Z (GMT). No. of bitstreams: 1 ntu-95-R92221021-1.pdf: 506176 bytes, checksum: 7ffde5af34eebeb96a3a1e67f209e357 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Contents
Chapter 1 Introduction, from classical to chaotic phenomenon 1 Chapter 2 Time series describing original and relaxed Cantor set 5 2.1 Method of delay reconstruction of time series and the embedding theorem of a presumably deterministic system 5 2.2 Grassberger and Procaccia algorithmic estimation of correlation dimension of a phase curve of time series assumed in a phase space converging to a strange attractor 6 2.3 A time series describing the geometric Cantor set, estimating its correlation dimension in stead of the geometric box counting dimension 7 2.4 Time series method effectively estimating correlation dimension of the relaxed Cantor set 10 Chapter 3 Reconstruction and estimation of fractal dimension of Nuclear Magnetic Resonance (NMR) laser data and arrhythmia data of human atrium 13 3.1 NMR and analysis of data of Kantz and Schreiber 13 3.2 Arrhythmia data of base line compare to application of propafanone (ppf) of human heart15 Chapter 4 Discussions of the Situation 18 References 19 | |
dc.language.iso | en | |
dc.title | 時間序列在資料重建之下嵌入相空間 | zh_TW |
dc.title | Data Reconstruction of Time Series in Embedding Phase Space | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳怡全,彭?堅 | |
dc.subject.keyword | 時間序列,相空間與相空間曲線,奇異吸引子,延遲重構,嵌入空間,classical and relaxed Cantor set,Belousov-Zhabotinskii reaction,核磁共振,心律不整,Grassberger and Procaccia (D2 dimension), | zh_TW |
dc.subject.keyword | time series,phase space and curve,strange attractor,delay reconstruction,embedding space,classical and relaxed Cantor set,Belousov-Zhabotinskii reaction,NMR,Arrhythmia,Grassberger and Procaccia (D2 dimension), | en |
dc.relation.page | 19 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 494.31 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。