Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor田光復
dc.contributor.authorChih-Wei Hoen
dc.contributor.author何志偉zh_TW
dc.date.accessioned2021-06-13T03:17:47Z-
dc.date.available2007-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationReferences:
[R1] Tucker, W. 'A Rigorous ODE Solver and Smale's 14th Problem.' Found. Comput. Math. 2, 53-117, 2002
[R2] Floris Tankens, “Detecting strange attractors in turbulence”, Lecture notes in mathematics, Vol.898 Dynamical systems and turbulence, 366-381, 1981
[R3] Tim Sauer, James A. Yorke and Martin Casdagli, “Embedology”, Journal of Statistical Physics, Springer Netherlands issue: Vol 65, Numbers 3-4 ,579 - 616 ,1991
[R4] Kathleen T. Alligood, Tim D. Sauer, James A. Yorke, “CHAOS An Introduction to Dynamical System”, Springer, 1996
[R5] Grassberger P. and Procaccia I. “Measuring the strangeness of strange attractors”, Physica D,9,189, 1983
[R6] Grassberger P. and Procaccia I. “Characterization of strange attractors” Phys. Rev. Lett., 50,346 1983a
[R7] H. Kantz, T. Schreiber, “Nonlinear Time Series Analysis”, 2nd ed., Cambridge Univ. Press, 2004
[R8] Construct a mathematical atrium fibrillation theory based on electrophysiological property of a single and a group of cardio cell by mathematical chaos theory with computer simulation.NSC report 93-2321-B-002-005-B32(2/2)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31695-
dc.description.abstractWhen studying a physical phenomenon experimentally following the evolution of time, we measured and collected relevant one dimensional data and considered it correct even when the data appeared chaotic, we assumed the phenomenon is controlled by a strange attractor in an unknown phase space. This point of view induces the delay reconstruction method and embedding theorems due to Whitney, Takems, Sauer, Yorke, Casdagli. What follows then is to estimate the dimension of that strange attractor by Grassberger and Procaccia (D2 dimension) method in that embedded space with the dimension, or higher. Before doing so I tried the idea of making a description of the classical Cantor set which is defined only through logic and is an uncountable set while any time series is at most countable. Then I tried the same method to any relaxed Cantor set and “calculate” the dimension and demonstrate that time series description is applicable. Furthermore, from two sets of experimental data (1. Nuclear Magnetic Resonance (NMR) 2.Arrhythmias), they and we use the same algorithm to estimate the “fractal” dimension of the attractor of the dynamical system.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:47Z (GMT). No. of bitstreams: 1
ntu-95-R92221021-1.pdf: 506176 bytes, checksum: 7ffde5af34eebeb96a3a1e67f209e357 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Chapter 1 Introduction, from classical to chaotic phenomenon 1
Chapter 2 Time series describing original and relaxed Cantor set 5
2.1 Method of delay reconstruction of time series and the embedding theorem of a presumably deterministic system 5
2.2 Grassberger and Procaccia algorithmic estimation of correlation dimension of a phase curve of time series assumed in a phase space converging to a strange attractor 6
2.3 A time series describing the geometric Cantor set, estimating its correlation dimension in stead of the geometric box counting dimension 7
2.4 Time series method effectively estimating correlation dimension of the relaxed Cantor set 10
Chapter 3 Reconstruction and estimation of fractal dimension of Nuclear Magnetic Resonance (NMR) laser data and arrhythmia data of human atrium 13
3.1 NMR and analysis of data of Kantz and Schreiber 13
3.2 Arrhythmia data of base line compare to application of propafanone (ppf) of human heart15
Chapter 4 Discussions of the Situation 18
References 19
dc.language.isoen
dc.title時間序列在資料重建之下嵌入相空間zh_TW
dc.titleData Reconstruction of Time Series in Embedding Phase Spaceen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳怡全,彭?堅
dc.subject.keyword時間序列,相空間與相空間曲線,奇異吸引子,延遲重構,嵌入空間,classical and relaxed Cantor set,Belousov-Zhabotinskii reaction,核磁共振,心律不整,Grassberger and Procaccia (D2 dimension),zh_TW
dc.subject.keywordtime series,phase space and curve,strange attractor,delay reconstruction,embedding space,classical and relaxed Cantor set,Belousov-Zhabotinskii reaction,NMR,Arrhythmia,Grassberger and Procaccia (D2 dimension),en
dc.relation.page19
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
494.31 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved