請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31685完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮河(Rong-Her Chen) | |
| dc.contributor.author | Chang-Ping Wu | en |
| dc.contributor.author | 吳昌坪 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:17:32Z | - |
| dc.date.available | 2016-08-03 | |
| dc.date.copyright | 2011-08-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | 1. 中國國家標準,CNS 14277 A1064,地工合成材詞彙。
2. 王元佐 (2006),「蜂巢格網擋土結構數值分析」,碩士論文,國立台灣大學土木工程學研究所。 3. 朱琮瑋 (2008),「懸臂式擋土牆最佳化設計之研究」,碩士論文,國立中央大學土木工程研究所。 4. 沈哲緯 (2005),「蜂巢格網加勁土壤之力學特性」,碩士論文,國立台灣大學土木工程學研究所。 5. 何嘉浚 (1996),「土釘擋土結構設計方法之探討」,碩士論文,國立台灣大學土木工程學研究所。 6. 邱太昌 (2005),「地工蜂巢格網介面特性與鋪面設計成效評估」,碩士論文,中原大學土木工程研究所。 7. 林四川、吳文隆、周功台 (1993),「邊坡穩定分析程式(STABL)應用之探討」,地工技術雜誌,第41期,第12-27頁。 8. 邱佑銘 (2005),「蜂巢格網擋土結構模型試驗」,碩士論文,國立台灣大學土木工程學研究所。 9. 洪勇善 (1999),「土釘擋土結構之力學行為」,博士論文,國立台灣大學土木工程學研究所。 10. 高宗永 (2007),「以複合材料模型驗證分析加勁擋土牆行為之研究」,碩士論文,國立成功大學土木工程研究所。 11. 陳天健 (1998),「加勁擋土牆靜動態行為之均質化分析」,博士論文,國立台灣大學土木工程學研究所。 12. 陳志昌 (2001),「FLAC程式應用於土壤邊坡穩定分析」,碩士論文,國立中央大學應用地質研究所。 13. 陳榮河 (1989),「加勁擋土牆之分析與設計」,地工技術雜誌,第25 期,第46-61頁。 14. 陳榮河、張達德 (1992),「加勁土壤結構暫行技術手冊」,交通部台灣區國道新建工程局使用手冊。 15. 曾國鴻與陳瑩達 (2003),「土籠檔土牆力學行為分析」,第十屆大地工程研討會,台灣。 16. 蕭富元 (2005),「加勁擋土牆施工影響因素之數值分析研究」,碩士論文,國立台灣科技大學營建研究所。 17. 賴榮毅 (2003),「土釘模型邊坡動態反應模擬」,碩士論文,國立台灣大學土木工程學研究所。 18. 謝啟萬、郭耀章、張達德、吳政翰 (1999),「地工蜂格網應用於路基加勁之研究」,第八屆大地工程學術研究討論會,台灣。 19. 羅國裕 (2004),「加勁擋土牆最佳化設計探討-以地工格網為例」,碩士論文,國立中央大學土木工程研究所。 20. AASHTO-AGC-ARTBA, 1990, “Design Guidelines for Use of Extnsuble Reinforcements (Geosynthetic) for Mechanically Stabilized Earth Walls in Permanent Applications,” In-situ soil Improvement Techniques, Task Force 27 Report, American Association of State Highway and Transportation Officials, Washington, DC, USA. 21. ASTM D4595-86, “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method,” ASTM International, West Conshohocken, PA, USA. 22. ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soil,” ASTM International, West Conshohocken, PA, USA. 23. ASTM D2216-05, “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,” ASTM International, West Conshohocken, PA, USA. 24. ASTM D854-06, “Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, USA. 25. ASTM D4253-00, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using Vibratory Table,” ASTM International, West Conshohocken, PA, USA. 26. ASTM D6637, “Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method,” ASTM International, West Conshohocken, PA, USA. 27. Bathurst, R. J. and Karpurapu, R., 1993, “Large-Scale Triaxial Compression Testing of Geocell-Reinforced Granular Soils,” Geotechnical Testing Journal, Vol. 16, No. 3, pp. 296-303. 28. Bathurst, R. J. and Cai, Z., 1995, “Pseudo-static seismic analysis of geosynthetic-reinforced segmental retaining walls,” Geosynthetics International, Vol. 2, No. 5, pp. 787-830. 29. Bathurst, R. J. and Crowe, R. E., 1994, “Recent Case Histories of Flexible Geocell Retaining Walls in North America,” Recent Case Histories of Permanent Geosynthetic-Reinforced Soil Retaining Walls, pp. 3-19. 30. Bathurst, R. J. and Hatami, K., 1998, “Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall,” Geosynthetics International, Vol. 5, No. 1-2, pp. 127-166. 31. Bathurst, R. J., Walters, D., Vlachopoulos, N., Burgess, P., and Allen, T. M., 2000, “Full Scale Testing of Geosynthetic Reinforced Walls,” ASCE Special Publication, Proceedings of GeoDenver, Denver, Colorado. 32. Bathurst, R.J., Althoff, S. and Linnenbaum, P., 2008, “Influence of Test Method on Direct Shear Behavior of Segmental Retaining Wall Unit,” ASTM Geotechnical Testing Journal, Vol. 31, No. 2, pp. 157-165. 33. Cancelli, A., Rimoldi, P. and Montanelli, F., 1993, “Index and Performance Tests for Geocells in Different Applications,” Geosynthetic Soil Reinforcement Testing Procedures, ASTM STP 1190, S. C. Jonathan Cheng, Ed., American Society for Testing and Materials, Philadelphia. 34. Chen, R. H. and Chiu, Y. M., 2008, “Model Tests of Geocell Retaining Structures,” Geotextiles and Geomembranes, Vol. 26, pp. 56-70. 35. Chen, T. C., Chen, R. H. and Lin, S. S., 2000, “A nonlinear homogenized model applicable toreinforced soil analysis,” Geotextiles and Geomembranes, Vol. 18, pp. 349-366. 36. Hatami, K. and Bathurst, R. J., 2001, 'Modeling static response of a segmental geosynthetic reinforced soil retaining wall using FLAC, FLAC and Numerical Modeling in Geomechanics,' International FLAC Symposium, Lyon, France, pp. 223-231. 37. Itasca Consulting Group., 2005, “FLAC: Fast Lagrangian Analysis of Continua,” version 5.0, Itasca Consulting Group, Inc., Minneapolis, Minnesota. 38. Koerner, R. M., 1997, “Designing with Geosynthetics,” 4th edition, Prentice Hall Inc., New Jersey, USA. 39. Leshchinsky, D., Han, J., 2004, “Geosynthetic Reinforced Multitiered Walls,” Geotechnical Engineering, ASCE Vol. 130, No. 12, pp. 1255–1235. 40. Madhavi Latha,G., Rajagopal, K. and Krishnaswamy, N.R., 2000, 'Interfacial friction characteristics of geocell reinforced soil,' Proc. of International Conference GEOENG2000 , Melbourne, Australia. 41. Presto Products Company, 2000, “The Geoweb Earth RetentionSystem Technical Overview,” USA. 42. Racana, N., Gourvès, R., Grédiac, M., 2001, “Mechanical Behavior of Soil Reinforced by Geocells,” International Symposium on Earth Reinforcement, Japan. 43. Rajagopal, K., Krishnaswamy, N. R. and Madhavi, L. G., 1999, 'Behaviour of Sand Confined With Single and Multiple Geocells,' Geotextiles and Geomembranes, Vol. 17, pp. 123-124. 44. Srivastava, A., Babu, GLS., Haldar, S., 2010, “Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis,” Engineering Geology Vol. 110, No. 3-4, pp. 93-101. 45. Vidal, H., 1966, “The Principle of Reinforced Earth,” Highw. Res.Rec., Vol. 282, pp. 1-16. 46. Wang, Y. M., Chen, Y. K., C. S. Wang, Hou, Z. X., 2008, 'Large-Scale Direct Shear Testing of Geocell Reinforced Soil,' Advances in Transportation Geotechnics pp. 6. 47. Wesseloo, J., 2005, 'The Strength and Stiffness of Geocell Support Packs,' Ph.D. Dissertation, Civil and Biosystems Engineering,University of Pretoria. 48. Wesseloo, J., Visser, A. T., Rust, E., 2009, “The Stress–strain Behaviour of Multiple Cell Geocell Packs,” Geotextiles and Geomembranes, Vol. 27, pp. 31-38. 49. Wong, K. S., Broms, B. B. and Chandrasekaran, B., 1994, “Failure Modes at Model Tests of a Geotextile Reinforced Wall,” Geotextiles and Geomembranes, Vol. 13, pp. 475-493. 50. Xie, Y., Yang, X., 2009, “Characteristics of a New-Type Geocell Flexible Retaining Wall,” Journal of Materials in Civil Engineering, Vol. 21, No. 4, pp 171-175. 51. Yoo, C., Lee, K., 2003, ”Instrumentation of Anchored Segmental Retaining Wall,” Geotechnical Testing Journal, vol. 26, No. 4, pp. 382-389. 52. Yoo, C., Kim, S., 2008, “Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: Full-scale load test and 3D finite element analysis,” Geotextiles and Geomembranes, Vol. 26 No. 6, pp. 460-472. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31685 | - |
| dc.description.abstract | 蜂巢格網加勁土壤之優點為增加土壤強度、降低土體變形。經過多年發展,蜂巢格網目前已廣泛應用於抗沖蝕、路基加勁、及擋土結構等。
本研究之主要目的是以數值模式分析蜂巢格網擋土結構物之力學行為。研究方法首先以蜂巢格網擋土結構物理模型試驗結果為依據,先針對物理模型之高度、傾角、型式、及結構物上方之荷重加載區、結構內之加勁區等影響因素,以數值模式分析並與物理模型試驗之結果比較,藉以驗證數值模式之正確性。而後選取一疊塊式擋土結構現地案例進行分析,進一步探討本數值模式應用於現地結構物之適用性。最後針對擋土結構物數種配置進行數值分析,探討各配置之優缺點並提出建議。 在數值模式驗證上,無論與模型試驗或是現地案例比較均獲得不錯的結果。例如,以塑性區定義破壞滑動面,與模型試驗觀察之滑動面相當一致;又利用FLAC內安全係數計算功能可準確預測模型破壞時的載重。而根據數值分析得到以下結:擋土結構的牆面水平位移量與背填土沉陷量,隨著牆面傾角變陡而增加;牆面式蜂巢格網較重力式產生較大之水平位移;而背填土加勁可有效地減少塑性區、水平位移量、與背填土沉陷量。 在配置分析方面,牆面傾角愈大,牆底產生愈大的剪力。以位移曲線及塑性區分布來說,將部分蜂格網層加長作為加勁之用,所得之牆面變形量最低,滑動面最不明顯、效果最好。另外,不同牆體形式或是傾角下,各配置的側向土壓力均接近Rankine主動土壓力分佈,可作為極限分析設計之參考。 | zh_TW |
| dc.description.abstract | Soil reinforced with geocells has the advantage of reducing the settlement and increasing the bearing capacity of the soil. Nowadays, geocells has been extensively employed in erosion control, pavements, as well as retaining walls.
The purpose of this study was to establish a numerical model for analyzing the mechanical behavior of geocell-reinforced retaining structures. In the study, the analytical results were compared with the results from model tests for verification the correctness of the numerical model. In addition, comparison with the result of a case study of segmental wall was also made. Finally, various layouts of retaining structures were analyzed, and suggestion was made based on the performance of the structures. The verification of the numerical model shows good results in the aspects of predicting potential slip plane by plastic zones and estimating the load to cause failure. In general, the analysis obtains following results: the wall with steeper inclination has more horizontal displacement of wall face and more settlement at the top of the wall; the facing-type wall displays more horizontal displacement than the gravity-type; the reinforcement in the backfill effectively reduce plastic zones, the horizontal displacement of wall face, and the settlement of backfill. The study on layouts of reinforced wall shows that steeper walls will induce higher shear stress at the bottom of the walls than gentler walls. In general, the wall with certain layer of lengthened geocells, serving as reinforcement, performs best in terms of reducing wall face’s deformation or minimizing potential slip zones. Moreover, Rankine’s active earth pressure may be adopted when conducting limit equilibrium analysis on geocell-reinforced walls. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:17:32Z (GMT). No. of bitstreams: 1 ntu-100-R98521126-1.pdf: 6965077 bytes, checksum: 4284e51ab9ddd5a8299ccf72a28c9d8a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XV 第一章 導論 1 1.1 研究動機及背景 1 1.2 研究目的與方法 1 1.3 研究內容 2 第二章 文獻回顧 5 2.1加勁擋土牆相關研究 5 2.1.1加勁土壤介紹 5 2.1.2全尺寸試驗 5 2.1.3界面摩擦試驗 6 2.1.4現地試驗 7 2.1.5加勁擋土牆數值模擬 7 2.2蜂巢格網簡介 9 2.2.1 蜂巢格網的優點 9 2.2.2 蜂巢格網類型與應用 10 2.2.3 蜂巢格網加勁機制 11 2.2.4 蜂巢格網室內試驗 12 2.2.5蜂巢格網擋土牆模型試驗 14 2.3 研究方向 16 第三章 界面性質試驗 40 3.1 加勁紙張界面直接剪力試驗 40 3.1.1 試驗用砂基本性質 40 3.1.2 試驗儀器介紹 41 3.1.3 試驗步驟 41 3.1.4 試驗結果 42 3.2 蜂巢格網層間界面直接剪力試驗 42 3.2.1 試驗材料基本性質 42 3.2.2 試驗儀器介紹 43 3.2.3 試驗步驟 43 3.2.4 試驗結果 43 3.3 地工格網層間界面拉拔試驗 44 3.3.1 試驗材料基本性質 44 3.3.2 試驗儀器介紹 44 3.3.3 試驗步驟 44 3.3.4 試驗結果 45 第四章 分析模式 54 4.1 有限差分程式 (FLAC) 介紹 54 4.1.1 運算原理 54 4.1.2 材料組成模式 55 4.1.3 語法定義及指令說明 56 4.1.4 FLAC內建結構元素 57 4.2 數值模型之建立 59 4.2.1 土壤元素 59 4.2.2 蜂巢格網牆面單元模擬 61 4.2.3 加勁材模擬 63 4.2.4 背填土與加勁土塊或加勁土塊與加勁土塊間之界面 64 4.3 蜂巢格網擋土結構數值模型建構 64 第五章 數值模式驗證 74 5.1 數值分析之驗證 74 5.1.1 牆面位移及牆頂沉陷 74 5.1.2 破壞滑動面 76 5.1.3 結構安全係數 77 5.2模型擋土結構影響因子之探討 77 5.2.1 擋土結構傾角之影響 78 5.2.2 加載區域之影響 78 5.2.3 背填土加勁之影響 78 5.2.4 擋土結構型式之影響 79 5.3 現地案例數值模擬 79 5.3.1 現地案例介紹 79 5.3.2 數值模型建立 80 5.3.3 數值分析之驗證 80 5.4 蜂巢格網建議設計 81 5.4.1 數值模型配置介紹 81 5.4.2 數值模型建立 82 5.4.3 設計配置之結果 82 5.4.4 牆面傾角之差異 83 5.5蜂巢格網加勁結構之設計方法 85 5.5.1 設計範例 85 第六章 結論與建議 136 6.1 結論 136 6.1.1 模型試驗及現地案例數值分析結果比對 136 6.1.2 建議設計配置數值分析 137 6.2 建議 137 參考文獻 139 附錄A 大型直剪儀校正資料 145 作者簡歷 147 | |
| dc.language.iso | zh-TW | |
| dc.subject | 擋土結構 | zh_TW |
| dc.subject | 蜂巢格網 | zh_TW |
| dc.subject | 水平位移 | zh_TW |
| dc.subject | 數值分析 | zh_TW |
| dc.subject | 沉陷量 | zh_TW |
| dc.subject | geocells | en |
| dc.subject | numerical analysis | en |
| dc.subject | reinforced retaining structure | en |
| dc.subject | horizontal displacement | en |
| dc.subject | settlement | en |
| dc.title | 蜂巢格網擋土結構數值分析與設計 | zh_TW |
| dc.title | Numerical Analysis and Design on Geocell Retaining Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林三賢,張惠文 | |
| dc.subject.keyword | 蜂巢格網,擋土結構,數值分析,水平位移,沉陷量, | zh_TW |
| dc.subject.keyword | geocells,reinforced retaining structure,numerical analysis,horizontal displacement,settlement, | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
