Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31674
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭士康(Shyh-Kang Jeng),陳丕燊(Pisin Chen)
dc.contributor.authorYu-Hsiang Linen
dc.contributor.author林裕翔zh_TW
dc.date.accessioned2021-06-13T03:17:16Z-
dc.date.available2011-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citation[1] E. P. Hubble, Proc. Nat. Acad. Sci. 15, 168 (1929).
[2] A. Friedmann, Z. Phys. 16, 377 (1922); ibid 21, 326 (1924).
[3] S. Perlmutter et al., Astrophys. J.517, 565 (1999).
[4] A. G. Riess et al., Astron. J. 116, 1009 (1998).
[5] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); S. Carroll, Dark Matter, Dark Energy: The Dark Side of the Univerese (DVD, The Teaching Company, 2007).
[6] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011).
[7] S. Dodelson, Modern Cosmology (Academic Press, 2003).
[8] A. Guth, Phys. Rev. D 23, 347 (1981).
[9] A. D. Linde, Phys. Lett. B 108, 389 (1982).
[10] A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[11] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).
[12] C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart. Phys. 07, 002 (2003).
[13] J. F. Donoghue, K. Dutta, and A. Ross, Phys. Rev. D 80, 023526 (2009).
[14] B. A. Powell and W. H. Kinney, Phys. Rev. D 76, 063512 (2007).
[15] I-C. Wang and K.-W. Ng, Phys. Rev. D 77, 083501 (2008).
[16] F. Scardigli, C. Gruber, and P. Chen, Phys. Rev. D 83, 063507 (2011).
[17] C. Gruber, Cosmic Microwave Background Anomaly and Its Indication of a Pre-Inflation Black Hole Universe (master thesis, Johannes Kepler Universität, Linz, 2010).
[18] L. Sriramkumar and T. Padmanabhan, Phys. Rev. D 71, 103512 (2005).
[19] D. Boyanovsky, H. J. de Vega, and N. G. Sanchez, Phys. Rev. D 74, 123006 (2006).
[20] B. Feng and X. Zhang, Phys. Lett. B 570, 145 (2003).
[21] R. K. Jain, P. Chingangbam, L. Sriramkumar, and T. Souradeep, Phys. Rev. D 82, 023509 (2010).
[22] P. Mukherjee and Y. Wang, Astrophys. J. 599, 1 (2003).
[23] P. Mukherjee and Y. Wang, Astrophys. J. 593, 38 (2003).
[24] Y. Wang, D. N. Spergel, and M. A. Strauss, Astrophys. J. 498, 1 (1999).
[25] D. J. Gross, M. J. Perry, and L. G. Yaffe, Phys. Rev. D 25, 330 (1982).
[26] R. J. Adler, P. Chen, and D. I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001).
[27] G.’t Hooft, arXiv:gr-qc/9310026; L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995); R. Bousso, Rev. Mod. Phys. 74, 825 (2002).
[28] H. P. Robertson, Astrophys. J. 82, 284 (1935); ibid., 83, 187, 257 (1936); A. G. Walker, Proc. Lond. Math. Soc. (2) 42, 90 (1936).
[29] S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008).
[30] S. W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26, 2681 (1982); A. H. Guth and E. J. Weinberg, Nucl. Phys. B 212, 321 (1983).
[31] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
[32] E. Bertschinger, arXiv:astro-ph/9503125v1.
[33] V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005).
[34] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[35] E. Lifshitz, J. Phys. USSR 10, 116 (1946).
[36] T. S. Bunch and P. C. W. Davies, Proc. R. Soc. Lond. A. 360, 117 (1978).
[37] E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company, 1990).
[38] S. Weinberg, Phys. Rev. D 67, 123504 (2003); ibid 69, 023503 (2004).
[39] D. H. Lyth, Phys. Rev. D 31, 1792 (1985).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31674-
dc.description.abstract有許多文獻探討宇宙背景輻射的非等向性溫度分布中,l = 2模態的強度和理論預測相比異常偏低的問題。大部分的文獻都提出和標準暴漲模型不同的預測,認為宇宙初始能譜在大尺度的部分有截止的現象。我們研究一個在暴漲期之前具有一段物質主宰時期的早期宇宙模型,並且以第一原理進行計算,檢查這樣的截止現象是否存在。zh_TW
dc.description.abstractThe problem of quadrupole anomaly in the cosmic microwave background temperature anisotropy spectrum is treated in many works. Most of them provide scenarios different from the one of standard inflation and point to a cutoff of power in the primordial power spectrum at large scales. We study the scenario of the early universe with a pre-inflation matter era, and make an ab initio calculation to check the existence of the infrared cutoff.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:16Z (GMT). No. of bitstreams: 1
ntu-100-R95942023-1.pdf: 1326034 bytes, checksum: 2b53eb9a9f5c80e89dfbf798dcfa4383 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
口試委員會審定書........................................................................................i
誌謝..............................................................................................................ii
中文摘要......................................................................................................iv
Abstract.......................................................................................................v
Contents........................................................................................................vi
List of Figures............................................................................................ix
Chapter 1 Introduction…………………………………………………...1
1.1 The expanding universe..................................................... 1
1.2 The CMB anisotropy and the quadrupole anomaly…....... 4
1.3 Proposed explanations to the quadrupole anomaly............ 6
1.3.1 Different initial conditions…………………………7
1.3.2 Different potentials………………………...………8
1.3.3 Reconstruction from CMB data……………………9
1.4 The pre-inflation matter era:
issues and solutions proposed in the thesis….................. 9
1.4.1 Issues in the calculation of the primordial
spectrum…………………………………...……….9
1.4.2 Ab initio treatment proposed in the thesis………...12
1.5 Chapter outline…............................................................. 13
Chapter 2 The zero-order universe…….........................................….... 14
2.1 The scale factor in ΛCDM model.................................... 14
2.1.1 The Robertson-Walker metric…….………………14
2.1.2 The Friedmann equations…………………………15
2.1.3 The numerical solution…………………….……..19
2.2 The scale factor in inflation era…................................... 23
2.2.1 The horizon and flatness problems………….…....23
2.2.2 Inflation as a solution to the problems……………27
2.2.3 The scalar field formulation……………………....30
2.2.4 The Planck units…………………………………..33
Chapter 3 The cosmological perturbation theory in inflation era…... 35
3.1 The metric perturbations….............................................. 35
3.2 The infinitesimal transformations and the gauges………38
3.2.1 The infinitesimal transformation of coordinate and
the metric perturbation…………………………....38
3.2.2 Eliminate the gauge degrees of freedom by choosing
a gauge…………………………………..………...43
3.3 The perturbation of energy-momentum tensor................ 45
3.4 The perturbed Einstein equation….................................. 46
Chapter 4 Quantization of inflaton field under various scenarios…....48
4.1 The pure inflation scenario………………………..…….49
4.1.1 Quantization of the inflaton field at early times….49
4.1.2 Validity conditions of the approximation…...…….55
4.2 The pre-inflation matter era…………………………..…55
4.2.1 Quantization of the inflaton field at early times.…58
4.2.2 Validity conditions of the approximation……...….59
4.3 The power spectrum of the quantum fluctuations…….…60
Chapter 5 The primordial power spectra…........................................... 63
5.1 The pure inflation scenario…………………………...…63
5.1.1 The expansion of modes………………………….63
5.1.2 The time-evolution of the inflaton field and the
metric perturbation………………………………..67
5.1.3 The primordial power spectra…………………….72
5.2 The results of the case with pre-inflation matter era…….74
5.2.1 The expansion of modes………………………….74
5.2.2 The time-evolution of the inflaton field and the
metric perturbation…………………………..……80
5.2.3 The primordial power spectra…………………….83
Chapter 6 Conclusions…......................................................................... 86
References..................................................................................................87

List of Figures
Chapter 1
Fig 1.1 The “Big Bang” model of the universe…………………………………….……2
Fig 1.2 The CMB temperature anisotropy spectrum………………………..…………...4
Fig 1.3 The composition of the universe……………………………………………….. 6
Chapter 2
Fig 2.1 The scale factor of ΛCDM model……………………………………………21
Fig 2.2 The scale factor of ΛCDM model, in log-log plot……………………….…..22
Fig 2.3 The power-law behavior of the scale factor of ΛCDM model………………22
Fig 2.4 The scale factor in the inflation era……………………………………….…32
Fig 2.5 The scalar field in inflation era…………………………………………..…..32
Fig 2.6 The time derivative of scalar field in inflation era……………………….….33
Fig 2.7 The time derivative of scalar field in inflation era, enlarged at the end of inflation………………………………………………………………..…….33
Chapter 5
Fig 5.1 The expansion of modes.…………………..…………………………..…….... 65
Fig 5.2 The time evolution of the inflaton field and the metric perturbation……..……68
Fig 5.3 The same plots as figure 5.2, for the mode whose physical wavelength is 1/10 to
the size of the Hubble radius today……………………………………….……69
Fig 5.4 The same plots as figure 5.2, for the mode whose physical wavelength is 1/100
to the size of the Hubble radius today…………………………….……………69
Fig 5.5 The time evolution of R…………………………………………………….…..71
Fig. 5.6 The primordial power spectra of , , and ………………….………..74
Fig. 5.7 The expansion of modes, with pre-inflation matter era…………….…………76
Fig. 5.8 The expansion of modes………………………………………………………78
Fig. 5.9 The separate enlarged plots of the mode whose physical wavelength today is
equal to the Hubble radius today…..…………………………………………79
Fig 5.10 The time evolutions of various fields………………………………………...81
Fig 5.11 The same plots as figure 5.10, for the mode whose physical wavelength is 1/10
to the size of the Hubble radius today…..……………………………………82
Fig 5.12 The same plots as figure 5.10, for the mode whose physical wavelength is
1/100 to the size of the Hubble radius today…..……………………………..83
Fig. 5.13 The primordial power spectra of , , and , in the case with
pre-inflation matter era………………………………………………………85
dc.language.isozh-TW
dc.subject早期宇宙zh_TW
dc.subject宇宙學zh_TW
dc.subject初始能譜zh_TW
dc.subject宇宙背景輻射zh_TW
dc.subject暴漲zh_TW
dc.subjectearly universeen
dc.subjectcosmologyen
dc.subjectprimordial power spectrumen
dc.subjectCMBen
dc.subjectinflationen
dc.title對於初始能譜長波段截止的研究zh_TW
dc.titleAb initio investigation on the infrared cutoff of the primordial power spectrumen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊輝
dc.subject.keyword宇宙學,初始能譜,宇宙背景輻射,暴漲,早期宇宙,zh_TW
dc.subject.keywordcosmology,primordial power spectrum,CMB,inflation,early universe,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2011-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
1.29 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved