Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31671
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳韻之
dc.contributor.authorHsien-Shu Linen
dc.contributor.author林顯書zh_TW
dc.date.accessioned2021-06-13T03:17:12Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-30
dc.identifier.citationAiroldi L R, Gallo LM, Palla S (1994). Precision of the jaw tracking system JAWS-3D. J Orofac Pain 8:155-164.
Bratzlavsky M. Eecken V. (1977). Postural reflexes in cranial muscles in man. Acta Neurologica Belgica. 77(1):5-11.
Balkhi MK, Tallents RH (1991). Error analysis of a magnetic jaw-tracking device. J Craniomandib Disord Facial Oral Pain 5:51-56.
Chen CC, Chen YJ, Lu TW, et al. (2003). Optimizing the Skin Marker Placements for the Mandibular Motion Measurements.[Conference paper] Annual meeting of Asian Academy of Craniomandibular Disorders, Sendai Japan
Chen CC, Chen YJ, Lu TW, et al. (2003). Influence of Reference Points on Condylar Rotation/Translation Diagrams.[Conference paper] 3rd biennial meeting of Asian Academy of Prosthodontics, Taipei Taiwan
Dijkstra PU. Hof AL. Stegenga B. de Bont LG. (1999). Influence of mandibular length on mouth opening. Journal of Oral Rehabilitation. 26(2):117-22.
Du Brul EL.Sicher and DuBrul’s Oral anatomy (1988). St Louis:Ishiaku EuroAmerican 107-132.
Enlow DH. Kuroda T. Lewis AB. (1971). Instrinsic craniofacial components. Angle orthodontist. 41(4):271-85.
Enlow D.H.,Dale J.G.(1985) Childhood facial growth and development. In: Oral histology: development, structure, and function. Ten Cate ,editors. St.Louis, The C.V. Mosby Company, pp.398-445.
Ferrario VF, Sforra C, Miani A, Serrao G (1992). Kinesiographic three-dimensional
evaluation of mandibular border movements: A statistical study in a normal young
nonpatient group. J Prosthet Dent 68:672-676.

Ferrario VF, Sforza C, Miani A, Serrao G, Tartaglia G (1996). Open-close movements
in the human temporomandibular joint: dose a pure rotation around the
intercondylar hinge axis exist? J Oral Rehabil 23:401-408.
Funakoshi M. Amano N. (1973). Effects of the tonic neck reflex on the jaw muscles of the rat. Journal of Dental Research. 52(4):668-73.
Funakoshi M, Fujita N, Takehana S. (1976). Relations between occlusal interference and jaw muscle activities in response to changes in head position. Journal of Dental Research. 55(4):684-90.
Gibbs CH, Messerman T, Reswick JB, Derda HJ (1971). Functional movements of the
mandible. J. Prosthet. Dent 26:604-620.
Goodwin GM, McCloskey DI, Matthew PBC. (1972). The persistence of appreciable kinesthesia after paralyzing joint afferents but preserving muscle afferents. Brain Res 37:326.
Hannam AG., DeCou RE, Scott JD, Wood WW (1980). The kinesiographic
measurement of jaw displacement. J Prosthet Dent 44:88-93.
Hopkin GB. Houston WJ. James GA. (1968). The cranial base as an aetiological factor in malocclusion. Angle orthodontist.; 38(3):250-5.
Ingervall B (1970). Variation of the range of movement of the mandibule in relation to facial morphology in children. Scandinavian Journal of Dental Research 78:535-543.
Ingervall B (1971). Variation of the range of movement of the mandibule in relation to facial morphology in young adults. Scandinavian Journal of Dental Research 78:535-543
Jankelson B, Swain CW, Crane PF, Radke JC (1975). Kinesiometric instrumentation:
a new technology. J Am Dent Assoc 90:834-840.
Jordan R.E.,Abrams L.,Kraus B.S.(1992) The evolutionary pathway to mankind. In: Kraus’ dental anatomy and occlusion. St.Louis, Mosby-Year Book, pp.319-333.

Kazazoglu E , Heath MR, Ferman AM, Davis GR, Kazazoglu E (1994). Recording mandibular movement: technical and clinical limitations of the sirognathograph. J Orofac Pain 8:165-177.
Karlsson S (1977). Recording of mandibular movements by intraorally placed light
emitting diodes. Acta Odont Scand 35:111-117.
Kerr FW. (1972). Central relationships of trigeminal and cervical primary afferents in the spinal cord and medulla. Brain Research. 43(2):561-72.
Knap F J, Richardson BL, Bogstad J (1970). Study of mandibular motion in six
degrees of freedom. J Dent Res 49:289-292.
Kohno S. Matsuyama T. Medina RU. (2001). Arai Y. Functional-rhythmical coupling of head and mandibular movements. Journal of Oral Rehabilitation. 28(2):161-7.
Koolstra JH, van Eijden TM (1997).The jaw open –close movements predicted by
biomechanical modeling. J Biomech 30: 943~950.
Koolstra JH. van Eijden TM. (2004) Functional significance of the coupling between head and jaw movements. Journal of Biomechanics. 37(9):1387-92.
Kuboki T, Takenami Y, Maekawa K, Shinoda M, Yamashita A, Clark GT (2000).
Biomechanical calculation of human TM joint loading with jaw opening. J Oral
Rehabil 27:940-51.
Lemmer J, Lewin A, van Rensburg LB (1976). The measurement of jaw movement. Part I. J Prosthet Dent 36:211-218.
Manzoni D, Pompeiano D, Stampacchia G. (1979). Tonic cervical influences on posture and reflex movements. Arch International Biol 117:81.
Messerman T (1967). A means for studying mandibular movements. J Prosthet Dent
17:36-43.
Messerman T , Reswick JB, Gibbs CH (1969). Investigation of functional mandibular
movements. Dent Clin North Am 13:629-642.

Miller WA. (1988). Evolution and Comparative Anatomy of Vertebrate Masticatory system. In: Mohl ND, Zarb GA, Carlsson GE, et al. (eds). A Textbook of Occlusion. Chicago:Quintessence Publishing:27
Miyaoka S. Hirano H. Miyaoka Y. Yamada Y.(2004). Head movement associated with performance of mandibular tasks. Journal of Oral Rehabilitation. 31(9):843-50.
Mohamed sE, Christensen LV. (1985). Mandibular reference positions. Journal of Oral Rehabilitation. 12(4):355-67.
Muto T. Kohara M. Kanazawa M. Kawakami J.(1994) The position of the mandibular condyle at maximal mouth opening in normal subjects. Journal of Oral & Maxillofacial Surgery. 52(12):1269-72.
Naeije M, Vander Weijden JJ, Megens CCEJ (1995). OKAS-3D: optoelectronic jaw movement recording system with six degrees of freedom. Med & Biol Eng & Comput. 33:683-688.
Naeije M. (2002). Local kinematic and anthropometric factors related to the maximum mouth opening in healthy individuals. Journal of Oral Rehabilitation. 29(6):534-9.
Nickel JC, McLachan KR, Smith DM (1988). Theoretical model of loading and
eminence development of the postnatal human temporomandibular joint. J Dent Res
67: 903-910.
Outerbridges JS, Melvill J. (1971). Reflex vestibular control of head movements in man. Aerospace Med 42:935.
Salaorni C, Palla S (1994). Condylar Rotation and anterior translation in healthy
Human Temporomandibular joints. Schweiz Monatsschr Zahnmed 140:415-422.
Smith DM, McLachman KR, McCall WD (1986). A numerical model of
temporomandibular joint loading. J Dent Res 65:1046-1052.
Sumino R, Nozaki S, Kotoh M. (1981). Trigemino-neck reflex. In: Kawamura Y, Dubner R (ed): Oral-Facial Sensory and Motor Functions. Tokyo: Quintessence:81.

T. Fukui, M. Tsuruta, K. Murata (2002). Correlation between facial morphology, mouth opening ability, and condylar movement during opening-closing jaw movements in female adults with normal occlusion. European Journal of Orthodontics 24:327-336.
Torisu T, Yamabe Y, Hashimoto N, Yoshimatsu T, Fujii H (2001). Head movement properties during voluntary rapid jaw movement in humans. Journal of Oral Rehabilitation. 28:1144-1152.
Visscher CM. Huddleston Slater JJ. Lobbezoo F. Naeije M. (2000). Kinematics of the human mandible for different head postures. Journal of Oral Rehabilitation. 27(4):299-305.
Wismans J, Veldpaus F, Janssen J, Huson A, Struben P (1980). A three-dimensional
mathematical model of the knee-joint. J Biomech 13, 677-685.
Yamabe Y, Yamashita R, Fujii H (1999). Head, neck and trunk movements accompanying jaw tapping. Journal of Oral Rehabilitation. 26:900-905.
Zafar H. Nordh E. Eriksson PO. (2002).Spatiotemporal consistency of human mandibular and head-neck movement trajectories during jaw opening-closing tasks. Experimental Brain Research. 146(1):70-6.
Zafar H (2000). Integrated jaw and neck function in man. Swedish Dent J Supple 143.
Zafar H, Eriksson P-O, Nordh E, Haggman-Henrikson B (2000). Wireless optoelectronec redordings of mandibular and associated head-neck movements in man: a methodological study. Journal of Oral Rehabilitation. 27:227-238.
Zavatsky AB, O'Connor JJ (1992). A model of human ligaments in the sagittal plane.
Part 1: Response to passive flexion. Proceedings of Institution of Mechanical
Engineers Part H. J Engin Med 206:125-134.
Zavatsky AB, O'Connor JJ (1993). Ligament forces at the knee during isometric
quadriceps contractions. Proceedings of Institution of Mechanical Engineers Part H.
J Engin Med 206: 7-18.

Zavatsky AB, O'Connor JJ (1994). Three-dimensional geometrical models of human
knee ligaments. Proceedings of Institution of Mechanical Engineers Part H. J Engin
Med 208:229-240.
Zwijnenburg A. Megens CC. Naeije M.(1996) Influence of choice of reference point on the condylar movement paths during mandibular movements. Journal of Oral Rehabilitation. 23(12):832-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31671-
dc.description.abstract在人類演化學的進程上,雙足站立的姿勢是嶄新且極為重要的步驟。人類於雙足站立後,由於眼睛必須保持向前直視,因此頸椎與頭顱也必須隨著這樣的改變來加以調整,這樣的調整同時會減小身體軀幹與下顎間的空間關係。因此下顎頭頸運動鏈的運動學行為,勢必受到影響。此外,人類因頭型不同所造成發育的改變,伴隨著不同的下顎補償現象,此現象極有可能影響身體軀幹與下顎間的空間關係,進而改變下顎與頭頸運動鏈的運動學行為。根據神經生理學研究,一些周邊本體感受機制可以強烈地調節頭頸部姿勢,而一個密切整合的神經生理反射模式似乎存在於強直的頸部反射作用及三叉反射作用之間,此暗示著至少在神經的層級內,顱下顎頸部運動鏈之間的交互作用應該是存在的。約一個世紀以前,下顎運動學即被觀察出由髁頭的旋轉與位移運動所構成,隨著近年來光電紀錄系統的發展,髁頭旋轉/位移關係圖可被用來作為解釋下顎運動學理想的表現。本實驗的目的旨在探究頭頸部姿勢與顱顏面型態對於下顎頭頸運動策略的影響。
二十三位受測者參與本實驗(平均年齡26歲),每位受測者被安排拍攝測顱攝影片以分析其顱顏面參數,並設定如下的六種不同頭頸部姿勢做為姿勢的變數,分別為:正常姿勢、一半伸展、全部伸展、一半屈曲、全部屈曲,頭頸前突,此六種頭頸部姿勢之角度由頸部活動範圍量測儀器來監控其角度。受測者於頭頸部活動受限情況下,以精確度達0.5mm之量尺,測量於上述六種姿勢下,上下門齒點最大張口之量測值。另使受測者於頭頸部活動無受限情況下,分別於頭部、軀幹部及下顎門齒點設置反光球標記,於步態分析實驗室中,利用VICON 512紅外線光電系統測量上述六種姿勢下之最大張口量值。該系統能夠建構出一個50立方公分的工作範圍,量測解析度可達0.0008mm,而最終系統測量之絕對誤差小於0.4mm。
實驗結果顯示:(一)頭頸部運動受限時,不同頭頸部姿勢及不同的顱顏面型態均會明顯地影響下顎最大開口量。(二)當頭頸部無運動受限時,不同的頭頸部姿勢也會影響下顎的最大開口量,以及構成下顎最大開口量的髁關節頭旋轉角度值。而顱顏面型態參數中,下顎髁頭旋轉量可以解釋絕大部份的最大開口量變異數,而總下顎長及下顎支傾斜角度可依次增強此變異數的解釋量。(三)下顎運動學策略旋轉與位移關係圖,經過一次微分以去除參考點選擇的誤差後,極端的頭頸部姿勢對於下顎的運動學策略,有統計學上的差異。而下顎角點角此顏面參數也會影響下顎運動學策略。(四)頭頸部運動無受限時,頭部確實會伴隨著下顎最大張口而微動。且不同的下顎軀幹之間的空間有不同程度的頭頸部微動及運動發生的先後順序。
  實驗結論,不論頭頸部是否為運動受限情況,不同的頭頸部姿勢與顱顏面參數皆會影響下顎最大開口量與下顎髁頭運動學策略。因此就我們的假設而言,不同的下顎軀幹之間空間,的確會對下顎運動學策略造成一定程度的影響。
zh_TW
dc.description.abstractDuring the human evolutional process,the bipedal posture was an important and a whole new step. Because of the eyes of human have to view forward, so the cervical vertebra and cranium must adapt for such change. This adaptation will reduce the space between the trunk and the mandible at the same time. Consequently, the kinematic chain of the mandible-head-neck should be influenced. Besides, the developmental changes due to different human head form often concomitant with different mandibular compensation. The compensation appearance might strongly effect the spatial relationship between the trunk and the mandible and then change the kinematic action of the mandible-head-neck kinematic chain. According to the neurophysiological studies that some peripheral proprioceptive mechanisms could strongly regulate the head-neck posture. And a closely organized neurophysiological reflex pattern seemed to be existed between the TNR activity and trigeminal reflex activity. These findings suggest that interaction within the cranio-mandibular-cervical kinematic chains, at least at this neurological level, should exist. About one century ago, the mandibular kinematics was observed that it was composed by condyle rotation and translation. As the optoelectronic recording device was recently developed, the rotation/translation diagrams could be the best presence for accounting mandibular kinematics. The aim of this study was to explore the influences of craniofacial morphology and head-neck posture on the mandibule-head-neck kinematic strategy.
Twenty-three subjects were invited to participate the study(average age was 26 y/o). Every subject was arranged for taking cephalometric films for analyzing the craniofacial parameters. And setting the following six different postures for postures parameters, they are normal posture, half extension, full extension, half flexion, full flexion, and head-neck protrusion. The degree of six head-neck postures were monitored the degrees by using the cervical range of motion instrument. Under the limited motion of head-neck, the subjects were measured the maximum mouth opening between the upper and lower incisal edge by using the ruler with 0.5mm accuracy, under above six head-neck postures. And setting retroreflective maker balls on the head, trunk and mandibular anterior teeth. Using the optoelectronic recording device(Vicon 512) to measure the maximum mouth opening under the above six head-neck postures in the gait-analyzing laboratory. This set up could yield a working volume of 50 x 50 x 50 cm3 with spatial resolution of 0.0008 mm and absolute system measuring error being less than 0.4 mm..
The present results of experiments express that: (1)As the head-neck motion was limited, different head-neck postures and different craniofacial morphology all significantly effect the maxium mouth opening. (2)As the head-neck motion was unlimited, different head-neck postures and different craniofacial morphology all significantly affect the maxium mouth opening. About the craniofacial morphology parameters, the mandibular rotation could explain almost the maximum mouth opening variation, and total mandibular length and the inclination of mandibular ramus could successively enhance the explaining amount of variation. (3)About the rotation/translation diagrams of the mandibular kinematics strategy,it has statistical significance between the extreme head-neck posture and mandibular kinematics strategy after deleting the errors of choosing the reference point by using the differential. And the gonion angle could also be influenced on the mandibular kinematics strategy. (4) As the head-neck motion was unlimited,the head was really to move slightly concomitant with mandibular maximum mouth opening. And the different spaces which existed between the mandible and trunk will show the different grade of head-neck slight moving and have the early or late sequence of motion occurrence.
The conclusion of the present experiments suggests that whatever the motion of head-neck was limited or unlimited, different head-neck posture and craniofacial parameters all affect the mandibular maximum mouth opening and the mandibular condyle kinematics strategy. Therefore, according to our hypothesis, different space between mandibule and trunk was really influenced on the mandibular kinematic strategy.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:12Z (GMT). No. of bitstreams: 1
ntu-95-R92422018-1.pdf: 4406609 bytes, checksum: 7a0c93ce9d84c3bd620bc3fcf4ffd839 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要………………………………………………………………PI
英文摘要………………………………………………………………PIV
總目錄…………………………………………………………………PVIII
表目錄…………………………………………………………………PX
圖目錄…………………………………………………………………PXI
第壹章 緒論
第一節 背景
一、人類演化進程與四足動物的比較……………………P1
二、人類演化進程中頭型的差異性………………………P3
三、神經解剖生理學觀點…………………………………P4
第二節 下顎運動學策略
一、下顎髁頭的旋轉與平衡………………………………P6
二、下顎運動學模式的記錄方式…………………………P8
第三節 下顎與軀幹之間空間關係與下顎運動學相關的文獻回顧一、下顎運動與頭頸部運動鏈之關係……………………P14
二、顱顏面型態對下顎運動的影響………………………P16
三、頭頸部姿勢對下顎運動的影響………………………P20
第四節 研究目的………………………………………………P21
第貳章 實驗材料與方法
第一節 實驗對象………………………………………………P22
第二節 實驗儀器與設備………………………………………P23
第三節 實驗流程與方法………………………………………P24
一、顱顏面型態參數之測量………………………………P24
二、不同頭頸部姿勢下最大開口量之測量
(頭頸部運動受限)…………………………………P28

三、不同頭頸部姿勢下顎運動學相關參數之測量
(頭頸部運動不受限)……………………………P29
第四節 實驗資料處理與分析………………………………P32
第參章 實驗結果與討論
第一節 不同頭頸部姿勢下對於最大開口量之影響
(頭頸部運動受限)…………………………………P33
第二節 顱顏面型態對於最大開口量的影響
(頭頸部運動受限)…………………………………P36
第三節 不同頭頸部姿勢對於下顎運動學策略的影響I
(頭頸部無運動受限)………………………………P39
第四節 不同頭頸部姿勢對於下顎運動學策略的影響II
(頭頸部無運動受限)………………………………P48
第五節 顱顏面型態對於下顎運動學策略的影響
(頭頸部運動無受限) ………………………………P54
第六節 顎開口運動對頭頸運動鏈的影響
(頭頸部運動無受限) ………………………………P61
第肆章 總結
第一節 結論 …………………………………………………P68
第二節 未來方向
一、深入探究其他影響下顎運動學策略之因素…………P71
二、比較顳顎關節疾病病患其下顎軀幹間關係對
下顎運動學策略的影響………………………………P73
三、建立顳顎關節三維電腦模型 ………………………P74
四、顳顎關節三維電腦模型之臨床應用 ………………P77
參考文獻 ……………………………………………………………P78
圖  目  錄
圖一:四足動物解剖型態圖……………………………………………………………P1
圖二:眼睛直視所造成之頸椎與下顎空間重整示意圖………………………………P2
圖三:人類適應直立雙足姿勢的頭部和舌骨的平衡和穩定圖………………………P2
圖四:人類頭型廣義分類圖……………………………………………………………P3
圖五:不同人類頭型其姿勢可能的影響………………………………………………P3
圖六:長頭型的人出現下顎支變寬及下顎較向前方置位的補償現象………………P4
圖七:不同群組受測者之間髁頭旋轉和位移的運動模式 …………………………P7
圖八:Posselt所定義之下顎邊際運動圖……………………………………………P8
圖九:蘇黎世學者Palla所用的Jaw-3D系統圖 ……………………………………P11
圖十:荷蘭學者Naeile所用的OKAS-3D系統圖……………………………………P12
圖十一:台灣大學醫學工程研究所的步態分析實驗室 ……………………………P12
圖十二:Vicon 512紅外線光電攝影組………………………………………………P13
圖十三:Zafar先導實驗的臉部標記貼………………………………………………P14
圖十四:T.Fukui於2000所做的實驗裝置圖………………………………………P18
圖十五:決定頭部屈曲與伸展角度之量角器CROM…………………………………P24
圖十六:顱顏面參數與參考平面示意圖 ……………………………………………P25
圖十七:正常坐姿示意圖……………………………………………………………P29
圖十八:頭頸部一半伸展示意圖……………………………………………………P29
圖十九:頭頸部完全伸展示意圖……………………………………………………P29
圖二十:頭頸部一半屈曲示意圖……………………………………………………P29
圖二十一:頭頸部完全屈曲示意圖…………………………………………………P29
圖二十二:頭頸部前突示意圖………………………………………………………P29
圖二十三:分別代表頭、下顎、軀幹三個剛體之反光球標記相關位置……………P30
圖二十四:黏貼於下顎前牙的純鈦基座與相連結的碳纖維支架 …………………P30
圖二十五:本實驗動作分析實驗室紅外線攝影機擺設位置與受測者相對位置圖P31
圖二十六:由下顎門齒區齒上目標標記支架所反推回髁關節頭座標系示意圖 …P32
圖二十七:23位受測者於頭頸部伸展與屈曲姿勢下之最大開口量測量分布圖…P33
圖二十八:編號2號受測者於各種頭頸部姿勢下之下顎最大開口旋轉/位移關係圖…………………………………………………………………………P40
圖二十九:編號16號受測者於各種頭頸部姿勢下之下顎最大開口旋轉/位移關  
係圖………………………………………………………………………P40
圖三 十:廿二位受測者於六種姿勢下,其位移量量測值分布盒型圖…………P42
圖三十一:廿二位受測者於六種姿勢下,其旋轉量量測值分布盒型圖…………P42
圖三十二:依據開口圖型規則所分成的四類一次微分圖…………………………P49
圖三十三:依一次微分圖分為四群組之受測者於Ar-Go-Gn參數下之量測值
點狀分布圖………………………………………………………………P60
圖三十四:編號4號受測者於各種頭頸部姿勢下之下顎頭頸運動鏈示意圖………P62
圖三十五:編號8號受測者於各種頭頸部姿勢下之下顎頭頸運動鏈示意………P62

表  目  錄
表一:側顱攝影片所使用的參考點與參考平面……………………………………P26
表二:側顱攝影片顱顏面之參考點參數與定義……………………………………P27
表三:23位受測者於各種姿勢下之最大開口量敘述統計測量相關值……………P34
表四:23位受測者於向前伸展與向後屈曲兩種姿勢下對於最大開口量測量值之
隨機效應模式統計分析結果…………………………………………………P35
表五:23位受測者正常姿勢下與顱顏面參數之相關係數統計分析表……………P37
表六:頭頸部運動受限之正常姿勢下,顱顏面參數與最大開口量之迴歸分析結果I ………………………………………………………………………………P38
表七:頭頸部運動受限之正常姿勢下,顱顏面參數與最大開口量之迴歸分析結果II ………………………………………………………………………………P38
表八:頭頸部運動無受限下,頭頸部各種姿勢之旋轉與位移敘述統計測量值一
覽表……………………………………………………………………………P41
表九:頭頸部運動無受限下,任兩種頭頸部姿勢之總旋轉量之間,
Wilcoxon符號等級檢定,統計學顯著性一覽表……………………………P46
表十:頭頸部運動無受限下,任兩種頭頸部姿勢之總位移量之間,
Wilcoxon符號等級檢定,統計學顯著性一覽表……………………………P47
表十一:頭頸部運動無受限下,最大開口前期運動於任兩種頭頸部姿勢下,其
旋轉/位移斜率值之Wilcoxon符號等級檢定統計學顯著性一覽表 ……P52
表十二:頭頸部運動無受限下,最大開口後期運動於任兩種頭頸部姿勢下,其
旋轉/位移斜率值之Wilcoxon符號等級檢定統計學顯著性一覽表 ……P53
表十三:VICON 512所量得之參數與顱顏面型態參數相關顯著性一覽表 ………P55
表十四:VICON 512所量得之參數與顱顏面型態參數迴歸分析結果一覽表 ……P56
表十五:Ramus inclination加入正負值交互作用項的迴歸分析結果一覽表……P57
表十六:依一次微分圖分為四群組之變異數分析結果一覽表 ……………………P59
表十七:各種頭頸部姿勢下,最大開口時,頭頸部相對於軀幹之旋轉角度與相
對於正常姿勢之運動差異值一覽表………………………………………P63
表十八:各種頭頸部姿勢下, 最大張口時,頭部運動與張口運動時間差值與相
關敘述統計一覽表…………………………………………………………P65
dc.language.isozh-TW
dc.subject髁頭zh_TW
dc.subject顱顏面型態zh_TW
dc.subject頭頸部姿勢zh_TW
dc.subject下顎zh_TW
dc.subject運動學zh_TW
dc.subjectkinematicen
dc.subjectcondyleen
dc.subjectcraniofacial morphologyen
dc.subjecthead-neck postureen
dc.subjectmandibleen
dc.title顱顏面型態與頭頸部姿勢對於下顎-頭頸運動學策略的影響zh_TW
dc.titleThe influence of craniofacial morphology and head-neck posture on the mandible-head-neck kinematic strategyen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor呂東武
dc.contributor.oralexamcommittee許明倫,蕭裕源,王若松
dc.subject.keyword顱顏面型態,頭頸部姿勢,下顎,運動學,髁頭,zh_TW
dc.subject.keywordcraniofacial morphology,head-neck posture,mandible,kinematic,condyle,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved