Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor常蘭陽
dc.contributor.authorChing-Quei Chenen
dc.contributor.author陳慶桂zh_TW
dc.date.accessioned2021-06-13T03:17:07Z-
dc.date.available2006-08-11
dc.date.copyright2006-08-11
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citation參考文獻
1. Lander, E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921
2. Grimwood et al. (2004) The DNA sequence and biology of human chromosome 19. Nature 428, 529-535
3. Diane J. Rowold & Rene J. Herrera (2000) Alu elements and the human genome. Genetica 108, 57-72
4. Ullu, E. & Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes. Nature 312, 171-172
5. Mark A. Batzer & Prescott L. Deininger (2002) Alu repeats and human genomic diversity. Nature Reviews Genetics 3, 370-380
6. A.J. Mighell, A.F. Markham, P.A. Robinson (1997) Alu sequences. FEBS Letters 417, 1-5
7. Quentin, Y. (1992) Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20, 487-493
8. Daniel Sinnett, Chantal Richer, Jean-Marc Deragon, and Damian Labuda (1991) Alu RNA secondary structure consists of two independent 7SL RNA-like folding unit. The Journal of Biological Chemistry 266, 8675-8678
9. Shaikh, T.H. & P.L Deininger (1996) The role and amplification of the HS Alu subfamily founder gene. J. Mol. Evol. 42(1): 15-21
10. Tomilin, N.V., V.M. Bozhkov, E.M. Bradbur & C.W. Schmid (1992) Differential binding of human nuclear proteins to Alu subfamilies. Nucleic Acids Res. 20(12):2941-2945
11. Deininger, P.L., Batzer, M.A.,, Hutchison, C.A. and Edgell, M.H. (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307-311
12. Boia,F., Wolff,N., Ryser,S. and Strub,K. (1997) The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res. 25, 318-326
13. Anthony C. Otieno, Anthony B. Carter, Dale J. Hedges, Jerilyn A.Walker, David A. Ray, Randall K. Garber, Bridget A. Anders, Nadica Stoilova, Meredith E. Laborde, Justin D. Fowlkes, Cheney H. Huang, Benjamin Perodeau and Mark A. Batzer. (2004) Analysis of the human Alu Ya-lineage. Journal of Molecular Biology 342, 109-118.
14. Astrid M. Roy, Marion L. Carroll, Son V. Nguyen, Abdel-Halim Salem, Michael Oldridge, Andrew O. M. Wilkie, Mark A. Batzer, and Prescott L. Deininger (2000) Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10, 1485-1495.
15. Jinchuan Xing, Abdel-Halim Salem, Dale J. Hedges, Gail E. Kilroy, W. Scott Watkins, John E. Schienman, Caro-Beth Stewart, Jerzy Jurka, Lynn B. Jorde and Mark A. Batzer (2003) Comprehensive analysis of two Alu Yd subfamilies. Journal of Molecular Evolution 57,76-89 
16. Astrid M. Roy, Marion L. Carroll, Son V. Nguyen, Abdel-Halim Salem, Michael Oldridge, Andrew O. M. Wilkie, Mark A. Batzer, and Prescott L. Deininger (2005) Analysis of the human Alu Ye lineage. BMC Evolutionary Biology 5:18
17. Rotem Sorek, Gil Ast and Dan Graur (2002) Alu-containing exons are alternativel spliced. Genome Res. 12, 1060-1067
18. Galit Lev-Maor, Rotem Sorek, Noam Shomron, Gil Ast (2003) The birth of an alternatively spliced exon: 3’ splice-site selection in Alu exons. Science 300, 1288-1291
19. Jenny Kreahling and Brenton R. Graveley (2004) The origins and implications of Alternative splicing. TRENDS in Genetics 20, 1-4
20. Prescott L. Deininger and Mark A. Batzer (1999) Alu repeats and human disease. Molecular Genetics and Metabolism 67, 183-193
21. Carl W Schmid (2003) Alu: a parasite’s parasite? Nature Genetics 35, 15-16
22. Fire,A., Xu, S., Montgomery,M. K., Kostas, S. A., Driver, S.E. & Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811
23. Ketting, R.F. and Plasterk, R.H. (2000) A genetic link bwtween co-suppression and RNA interference in C. elegans. Nautre 404, 296-298
24. Emily Bernstein, Amy A. Caudy, Scott M. Hammond & Gregory J. Hannon (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366
25. Ricardo Almeida and Robin C. Allshire (2005) RNA silencing and genome regulation. TRENDS in Cell Biology 15, 251-258
26. Jidong Liu, Michelle A. Carmell, Fabiola V. Rivas,Carolyn G. Marsden, J. Michae Thomson, Ji-Joon Song,Scott M. Hammond, Leemor Joshua-Tor, Gregory J. Hannon (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441
27. Schwarz DS, Tomari Y, Zamore PD. (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol. 4;14(9), 787-791
28. Slack, F.J., Basson, M., Liu,Z., Ambros, V., Horvitz, H.R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway bwtween the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659-669
29. John G. Doench, Christian P. Petersen and Phillip A. Sharp (2003) siRNAs can function as miRNAs. Genes & Dev. 17, 438-442
30. Makeyev, E.V. and Bamford, D.H. (2002) Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417-1427
31. Hiroaki Kawasaki & Kazunari Taira (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211-217
32. Kevin V. Morris, Simon W.-L. Chen, Steven E. Jacobsen, David J. Looney (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289-1292
33. Lee, R.C. and Ambros, V. (2001) An Extensive Class of Small RNAs in Caenorhabditis elegans. Science 294, 862-864
34. David Baulcombe (2005) RNA silencing. TRENDS in Biochemical Sciences 30, 290-293
35. Andre Verdel, Songtao Jia, Scott Gerber, Tomoyasu Sugiyama, Steven Gygi, Shiv I. S. Grewal, Danesh Moazed (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672-672
36. Schramke, V. and Allshire, R. (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069-1074
37. Mohammed Amarzguioui, John J. Rossi, Dongho Kim (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 579(26), 5974-5981
38. Frank J. Slack, Michael Basson, Zhongchi Liu, Victor Ambros, H. Robert Horvitz, and Gary Ruvkun (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell 5, 659-669
39. Lee P. Lim, Nelson C. Lau, Philip Garrett-Engele, Andrew Grimson, Janell M. Schelter, John Castle, David P. Bartel, Peter S. Linsley & Jason M. Johnson (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773
40. Amanda Birmingham, Emily M Anderson, Angela Reynolds, Diane Ilsley-Tyree, Devin Leake, Yuriy Fedorov, Scott Baskerville, Elena Maksimova, Kathryn Robinson, Jon Karpilow, William S Marshall & Anastasia Khvorova (2006) 3’UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3, 199-204
41. Aimee L Jackson, Steven R Bartz, Janell Schelter, Sumire V Kobayashi, Julja Burchard, Mao Mao, Bin Li, Guy Cavet & Peter S Linsley (2003) Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology 21, 635-637
42. Xiaoyu Lin, Xiaoan Ruan, Mark G. Anderson, Jeffrey A. McDowell, Paul E. Kroeger, Stephen W. Fesik and Yu Shen (2005) siRNA-mediated off-target gene silencing triggered by a 7nt complementation. Nucleic Acids Research 33, 4527-4535
43. Diya Banerjee and Frank Slack (2002) Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. BioEssays 24, 119-129
44. Bryan R Cullen (2004) Transcription and processing of human microRNA precursors. Molecular Cell 16, 861-865
45. Mariana Lagos-Quintana, Reinhard Rauhut, Winfried Lendeckel, Thomas Tuschl (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853-858
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31668-
dc.description.abstract人類基因體中有42%以上是由反轉錄跳躍子組成,其中數量最豐富的是屬於short interspersed element (SINE)家族的Alu序列。Alu序列長度約250-300bp,是由兩個被A-rich序列分隔的同源單體串聯排列組成,常出現在基因體中的intron及基因間區域,有時也會插入3’ untranslated region (UTR),而目前Alu序列的研究主要集中在它的分類以及與遺傳疾病的關係。
  RNA 干擾現象(RNAi)能引發基因轉錄後的表現下降,在自然界中主要和胚胎發育、宿主細胞防禦還有異染色質的形成有關。RNAi是由可和細胞內源的mRNA互補之雙股RNA所引發,它們在細胞內被切成小片段RNA後,進而造成mRNA的降解或轉譯的抑制。RNAi已經成為研究基因功能廣泛使用的工具。
  我的論文主要是研究Alu序列是否也有扮演基因調控的角色。我們建構了pDPAlu95,它可以利用H1與U6兩個啓動子表達雙股Alu RNA,而綠螢光蛋白則當作報導基因,我們以螢光顯微鏡、西方點墨法、反轉錄聚合酶鏈鎖反應(RT-PCR)偵測轉染載體後細胞內GFP表現的程度。當pDPAlu95和基因下游接上完整Alu序列或含有完整Alu序列的3’UTR(來自六個不同的人類基因)之GFP載體共轉染至HEK293細胞,GFP的表現有顯著的下降,這暗示Alu序列可作為RNAi的標的序列而使基因轉錄後表現受調控。在另一個實驗,則顯示單一Alu單體也能夠成為標的序列而引發RNAi。
  為了進一步分析Alu引發的RNAi抑制,我們將接上含有Alu序列的3’UTR(來自OACT1基因)之GFP載體中的Alu序列全部或部分剔除。pDPAlu95對3’UTR含有5’或3’ Alu單體的GFP載體表現仍有抑制的能力。不過,當GFP載體的3’UTR之Alu序列完全被剔除後,Alu序列仍能引發明顯地GFP表現抑制,這暗示OACT1的3’UTR中有可以作為pDPAlu95引發off-target抑制之潛在標的序列。
  為了檢測5個內源性於3’UTR含有Alu序列的基因表現是否會被Alu引發的RNAi抑制所影響,我們也將pDPAlu95直接轉染至HEK293細胞株,並以RT-PCR偵測基因表現的情形,結果pDPAlu95卻無法抑制偵測的基因之表現,這和之前我們在pH1-siAlu95的實驗中所觀察的結果不大相符。所以,研究在細胞內Alu序列是否能引發RNAi的抑制時,選擇適當的表達載體可能是重要的
zh_TW
dc.description.abstractRetrotransposable elements, or retrotransposons, constitute about 42% of the sequence content of the human genome. The most abundant retrotransposons belong to the short interspersed element (SINE) family represented predominantly by the Alu sequences of 250-300bp long, which are composed of two homologous units in tandem separated by a stretch of AT-rich sequence. The Alu sequences are found commonly in introns and intergenic regions. In some occasions, they are present also in the 3’ untranslated region (UTR) as a consequence of retrotransposition. The current research of the Alu element is focused mainly on its taxonomical classification and relationship to genetics diseases.
It has been known that down-regulation of expressed genes can be mediated by RNA interference (RNAi). This post-transcriptional event has been associated with embryonic development, host defense and chromatin remodeling. The mode of RNAi action is initiated by double-stranded (ds) RNA complementary to endogenous mRNA and the intracellularly processed small interfering RNA then triggers mRNA degradation or translational arrest. RNAi has become an important tool widely used for gene function analysis.
The principal aim of my research is to examine whether the Alu sequence may play a biological role in gene regulation. We have constructed pDPAlu95 expressing ds-Alu RNA under the H1 and U6 double promoters. The green fluorescence protein (GFP) gene was used as a reporter to determine its expression level in transfected cells by the fluorescence microscopy, Western blotting, and the reverse-transcription polymerase chain reaction (RT-PCR). The expression of GFP were significantly reduced in cells co-transfected with pDPAlu95 and the GFP reporters fused downstream with a full-length Alu sequence only or with Alu-containing 3’UTRs derived individually from six different human genes. These results suggest that the Alu sequence may serve as a target for RNAi in post-transcriptional gene regulation. Additional studies showed that a single unit of the Alu sequence was sufficient for the RNAi targeting.
To further analyze the Alu-mediated RNAi effect on the expression of GFP fused with Alu-containing 3’UTRs from the OACT1 gene, we generated a series of constructs with the Alu sequence completely or partially deleted. The suppressive activity on GFP expression conferred by pDPAlu95 was unaltered in constructs containing either the 5’- or 3’- unit of the Alu sequence in the 3’UTR. However, Alu-mediated reduction of GFP expression remained significant in the fusion gene completely devoid of the Alu sequence; suggesting the presence of potential off-targeting site(s) in the 3’UTR.
We also examined the Alu-mediated RNAi effect on the expression of five endogenous genes that contain Alu sequences in the 3’UTR by transfecting pDPAlu95 directly into the HEK293 cell line. The expression level was assayed by the RT-PCR. Contrary to our early observations with pH1-siAlu95, pDPAlu95 failed to repress the expression of the five genes examined in this study. It is possible that selection of appropriate expression vectors may be critical to the in vivo study of Alu-mediated gene silencing by RNAi.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:07Z (GMT). No. of bitstreams: 1
ntu-95-R93424018-1.pdf: 2156445 bytes, checksum: bc379f2ee26300f9468179c0f35f66b6 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝••••••••••••••••••••••••••I
目錄•••••••••••••••••••••••••••II
圖表目錄•••••••••••••••••••••••••IV
中文摘要••••••••••••••••••••••••VII
英文摘要•••••••••••••••••••••••IX
壹、緒論•••••••••••••••••••••••••1
1.1 Alu序列••••••••••••••••••••••••1
1.1.1 Alu序列和人類基因體的關係•••••••••••••1
1.1.2 Alu序列的結構和來源••••••••••••••••1
1.1.3 Alu序列的轉錄和反轉錄作用的機制••••••••••3
1.1.4 Alu序列的演化•••••••••••••••••••3
1.1.5 Alu序列對基因體的影響•••••••••••••••5
1.2 核醣核酸干擾現象(RNA interference, RNAi)••••••••5
1.2.1 RNAi的發現和形成機制•••••••••••••••5
1.2.2 RNAi的應用••••••••••••••••••••7
1.2.3 Small RNA在生物體內扮演的角色•••••••••••8
1.3 實驗方向及目的•••••••••••••••••••••9
貳、材料與方法••••••••••••••••••••••11
2.1 材料•••••••••••••••••••••••••11
2.2 實驗方法•••••••••••••••••••••••20
參、實驗結果•••••••••••••••••••••••28
3.1 含Alu序列的基因之搜尋與表現分析•••••••••••28
3.1.1 應用生物資訊學搜尋含有Alu序列的基因••••••28
3.1.2 含Alu序列的基因之表現分析•••••••••••29
3.2 pEGFP-3’UTRs的建構及其表現與序列分析••••••••29
3.2.1 pEGFP-3’UTRs的建構••••••••••••••29
3.2.2 pEGFP-3’UTR的表現分析••••••••••••30
3.2.3 pEGFP-3’UTR上的Alu序列確認•••••••••31
3.3 pDPAlu95對含有Alu序列的pEGFP質體的抑制能力測定••32
3.3.1 pDPAlu95的功能性測定•••••••••••••32
3.3.2 pDPAlu95對pEGFP-3’UTR抑制能力的測定••••35
3.4 尋找pDPAlu95的作用目標•••••••••••••••37
3.4.1 pDPAlu95對剔除一半Alu序列的GFP載體抑制能力測定•••••••••••••••••••••••37
3.4.2 pDPAlu95對Alu序列全部或部份剔除的pEGFP-3’UTR抑制能力測定•••••••••••••••••••38
3.5 pDPAlu95對含有Alu序列的內源性基因之抑制能力測定•••40
肆、結果討論•••••••••••••••••••••••42
4.1 pDPAlu95標的序列的探討•••••••••••••••42
4.2 pDPAlu95引發的非特異性抑制的探討••••••••••43
4.3 pDPAlu95和microRNA引發的RNAi抑制之相似處••••44
4.4 Alu RNA和pre-miRNA的二級結構比較•••••••••44
4.5 pDPAlu95和pH1-siAlu95的比較•••••••••••••45
4.6 實驗結果統整•••••••••••••••••••••46
參考文獻•••••••••••••••••••••••••47



圖表目錄
表目錄
表1、各種跳躍子在23對染色體中佔的百分比••••••••52
表2、OACT1與5個含有Alu序列的基因資料••••••••53
表3、SERPINB9與LOC401287的Alu序列在黑猩猩基因體的搜尋••••••••••••••••••••••••••••54
圖目錄
圖1、反轉錄跳躍子(retrotransposon)的分類•••••••••55
圖2、Alu序列的結構和演化過程••••••••••••••56
圖3、Alu序列的二級結構•••••••••••••••••57
圖4、Alu序列的轉錄和反轉錄機制•••••••••••••58
圖5、Alu序列在靈長類基因體的演化和時間的關係••••••59
圖6、RNAi形成途徑•••••••••••••••••••60
圖7、在細胞中人為產生siRNA的方法••••••••••••61
圖8、異染色質的形成和RNAi有關•••••••••••••62
圖9、pEGFP-C1質體結構圖••••••••••••••••63
圖10、Double-Promoter pFIV-H1/U6 siRNA expression vector結構圖及pDPCtrl和pDPAlu95示意圖••••••••••••••••64
圖11、OACT1的Alu序列和RefSeq資料庫中的mRNA比對後的結果••••••••••••••••••••••••••••65
圖12、OACT1及五個含有Alu序列的基因結構以及Alu序列的方向性••••••••••••••••••••••••••••66
圖13、以RT-PCR分析5個3’UTR含有Alu序列的基因在細胞株內的mRNA表現情形••••••••••••••••••••67
圖14、6個pEGFP-3’UTR的詳細說明••••••••••••68
圖15、pEGFP-3’UTR和pEGFP-C1及pEGFP-Alu的螢光表現比較••••••••••••••••••••••••••••69
圖16、pEGFP-3’UTR蛋白質和mRNA的表現情形•••••••70
圖17、pEGFP-3’UTR上的Alu序列的比對結果••••••••71
圖18、pDPAlu95抑制pEGFP-C1與PEGF-Alu的螢光情形•••72
圖19、pDPAlu95抑制pEGFP-C1與pEGFP-Alu mRNA和蛋白質的情形••••••••••••••••••••••••••••73
圖20、pDPAlu95抑制pEGFP-3U-OACT1和pEGFP-3U-C14ORF82的螢光表現情形••••••••••••••••••••••74
圖21、pDPAlu95抑制pEGFP-3U-ZNF543和pEGFP-3U-MANEAL螢光表現的情形•••••••••••••••••••••••75
圖22、pDPAlu95抑制pEGFP-3U-LOC401287和pEGFP-3U-SERPINB9螢光表現的情形••••••••••••••••••••••76
圖23、pDPAlu95抑制pEGFP-3’UTRs的mRNA表現的情形•••77
圖24、pDPAlu95抑制pEGFP-3’UTR的蛋白質表現情形••••78
圖25、pDPAlu95抑制剔除一半Alu序列的pEGFP-Alu的螢光表現情形••••••••••••••••••••••••••••79
圖26、pDPAlu95抑制剔除一半Alu序列的pEGFP-Alu的mRNA和蛋白質表現的情形•••••••••••••••••••••80
圖27、以不同莫耳數的pDPAlu95抑制含有Alu和不含Alu序列的pEGFP-3U-OACT1的蛋白質表現情形••••••••••••81
圖28、pDPAlu95抑制含有全長Alu序列或不含有Alu序列的pEGFP-3U-OACT1的螢光表現情形•••••••••••••82
圖29、pDPAlu95抑制剔除一半Alu序列的pEGFP-3U-OACT1的螢光表現情形••••••••••••••••••••••••83
圖30、pDPAlu95抑制各種GFP-3U-OACT1的mRNA表現情形•84
圖31、pDPAlu95抑制各種pEGFP-3U-OACT1的蛋白質表現情形••••••••••••••••••••••••••••85
圖32、pDPAlu95抑制內源性含有Alu序列的基因的測定••••86
圖33、以OACT1的Alu序列之left和right monomer進行序列比對的結果••••••••••••••••••••••••••87
圖34、將left monomer 29-47nt和OACT1的3’UTR序列比對的結果••••••••••••••••••••••••••••88
圖35、mir-30的pre-miRNA結構示意圖•••••••••••89
dc.language.isozh-TW
dc.subjectAlu序列zh_TW
dc.subjectRNA干擾現象zh_TW
dc.subjectRNA interferenceen
dc.subjectAlu sequenceen
dc.titleRNA干擾現象對含Alu序列基因表現之影響zh_TW
dc.titleEffect of the Expression of Alu-containing Genes by RNA Interferenceen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑媛,林文昌(Wen-Chang Lin)
dc.subject.keywordRNA干擾現象,Alu序列,zh_TW
dc.subject.keywordRNA interference,Alu sequence,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved