Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorJo-Wei Huangen
dc.contributor.author黃若暐zh_TW
dc.date.accessioned2021-06-13T03:16:47Z-
dc.date.available2008-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citation[1] Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 2004. 16(14): p. 1151-1170.
[2] Smith, L.A.; Ma, P.X. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces, 2004. 39(3): p. 125-31.
[3] Frenot, A.; Chronakis, I.S. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science, 2003. 12: p. 64-75.
[4] Li, W.J. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, 2002. 60(4): p. 613-21.
[5] Bowling, G.L. Electrospinning biomaterials. J Textile Apparel Technol Manage, 2001. 1: p. Special issue: The Fiber Society Spring 2001 Conference, Raleigh NC.
[6] Matthews, J.A. Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 3(2): p. 232-8.
[7] Yoshimoto, H. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p. 2077-82.
[8] Boland, E.D. Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater, 2004. 71(1): p. 144-52.
[9] Lee, C.H. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-70.
[10] Yang, F. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-10.
[11] Suh, J.K.; Matthew, H.W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-98.
[12] Singla, A.K.; Charla, M. Chitosan: some pharmaceutical and biological aspects- an update. J Pharm Pharmacol, 2001. 53: p. 1047-1067.
[13] Illum, L. Chitosan and its use as a pharmaceutical excipient. Pharm Res, 1998. 15(9): p. 1326-1331.
[14] Kas, H.S. Chitosan: properties, preparations and application to microparticulate systems. J Microencap, 1997. 14(6): p. 689-711.
[15] Errington, N. ; Harding, S.E. Hydrodynamic characterization of chitosans varying in molecular weight and degree of acetylation. Int J Biol Macromol,1993. 15: p. 119-117.
[16] Jollès, P.; Muzzarelli, R.A.A. Chitin and Chitinase. Birkhauser Verlag, Boston, 1999.
[17] Hirano, S.; Tsuchida,H.; Nagao, N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials. 1989. 10(8): p. 574-576.
[18] Dixon, M.; Edwin, C. Enzymes, 3rd ed. Academic Press, New York 1976.
[19] Geng, X.; Kwon, O.H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-32.
[20] Duan, B. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed, 2004. 15(6): p. 797-811.
[21] Bhattarai, N. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005. 26(31): p. 6176-84.
[22] Li, L.; Hsieh, Y.L. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res, 2006. 341(3): p. 374-81.
[23] Lavertu, M. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal, 2003. 32(6): p. 1149-58.
[24] Freier, T. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005. 26(29): p. 5872-8.
[25] Xu, C.Y. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-86.
[26] Pawlowski, K.J. Electrospinning of a micro-air vehicle wing skin Polymer, 2003. 44: p. 1309-1314.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31654-
dc.description.abstract韌帶損傷常發生於許多運動及活動中,現在的治療方法不外乎自體移植或人工韌帶,但是病人在自體移植時要承受多餘的痛苦,而人工韌帶的製成尚未達到理想的標準,所以還有很大的進步空間。
電紡織的技術,早就在近七十年前就已經有專利技術了,由於可以克服表面張力而噴射出有奈米等級的纖維絲,在許多組織工程的研究中都漸漸受到重視。幾丁聚醣是已經被FDA認證的聚合物,在臨床上的應用十分廣泛,加上此材料不僅是價格便宜,更有良好的生物相容性、生物可分解性和低生物毒性,是十分理想的支架材料。
這篇文章利用幾丁聚醣為主要材料,以電紡織的技術製作有奈米等級的纖維,由於電紡織所要調控的參數很多,如:溶質和溶劑的選擇、電場的大小、電紡速度、噴嘴的選擇和適當的選擇添加物等,每一細微變化可能都會影響產物的狀態和性質,所以要不斷嘗試不同的參數,使所得的奈米纖維絲可以趨於理想。
在得到理想參數之後,利用高速滾輪將奈米纖維絲做有規律地收集,以做成奈米等級的基質,並經中和處理來增加細胞的貼附能力,最後培養上韌帶細胞加以觀察,希望能夠發展出一個理想的韌帶組織工程材料。
zh_TW
dc.description.abstractLigamentary injury usually occurs in many sports or activities. Therapeutic treatments included autograft and artificial ligament reconstruction. Due to the reasons that patients would suffer a lot from autograft, and the artificial ligament did not reach the best standard, there is still some space to improve.
Although the electrospinning technique has been patented for seventy years, people have paid more and more attention in the field of tissue engineering due to the ability of making nanofiber. Chitoson, a polymer that has been proved by FDA and been applied in clinical use, it is a suitable supporting material not only due to its inexpensive price, but also its great biocompatibility, biodegradability, and low bio-toxicity.
In this article, we use chitoson as the main material to generate nanofiber by electrospinning. There are many parameters in electrospinning, such as the choice of solute and solvent, the size of the electric field, the velocity of electrospinning, the choice of jet and proper addictive. Every subtle change can affect the condition and property of the products; therefore, we have to try different parameters to make the nanofiber more ideal.
After getting the ideal parameter, we use high speed rotor regularly collect the nanofiber. This nanofiber was neutralized to increase the ability of cell attachment. We wish to develop an ideal material for ligament tissue engineering by observing the condition of nanofiber which cultured with ligament cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:16:47Z (GMT). No. of bitstreams: 1
ntu-95-R93548028-1.pdf: 3620192 bytes, checksum: f98a962fb416a6bae581888434b5fa96 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄.......................................................I
圖目錄...................................................III
表目錄.....................................................V
Abstract...................................................VI
中文摘要................................................ VII
第一章 序論...............................................1
第二章 文獻回顧...........................................3
2-1 奈米材料............................................3
2-2 奈米纖維支架在組織工程上的應用......................3
2-3 電紡織法( electrospinning)..........................4
2-4 幾丁聚醣............................................8
2-5 幾丁聚醣在電紡技術上的應用.........................11
第三章 研究動機與目的....................................13
第四章 實驗材料與方法....................................14
4-1 實驗藥品...........................................14
4-2 實驗儀器...........................................15
4-3 實驗溶液與培養液配製...............................16
4-4 實驗方法...........................................18
4-4-1 電紡織器材的架構................................18
4-4-2 幾丁聚醣去乙醯度的改變..........................18
4-4-3 溶液的製備及電紡步驟 ...........................19
4-4-4 奈米纖維材料的中和及滅菌........................21
4-4-5 韌帶細胞的純化與培養............................21
4-4-6 掃描式電子顯微鏡(SEM)觀察.......................22
4-4-7 幾丁聚醣薄膜的製備..............................23
4-4-8 細胞計數........................................23
第五章 研究結果與討論....................................26
5-1 幾丁聚醣 / 醋酸水溶液 的電紡織結果與討論...........25
5-2 PCL / 三氯甲烷 的電紡織結果與討論..................28
5-2-1 濃度不同對電紡的影響............................ 28
5-2-2 電場不同對電紡的影響及拉扯後的觀察.............. 30
5-2-3 離針尖距離的不同對產物的影響.................... 31
5-3 幾丁聚醣 / 三氟醋酸 的電紡織結果與討論.............. 32
5-3-1 三氟醋酸純度與幾丁聚醣濃度的探討...............32
5-3-2 電場對電紡的影響............................... 37
5-3-3 幾丁聚醣去乙醯度對電紡的影響................... 40
5-3-4 添加物對幾丁聚醣溶液電紡的影響................. 41
5-3-5 PEG的分子量對電紡絲的影響......................44
5-3-6 以滾輪收集奈米纖維絲........................... 45
5-3-7 針尖距離目標物的距離對電紡的影響............... 48
5-3-8 較理想的奈米纖維絲............................. 50
5-4 韌帶細胞種植........................................ 52
第六章 結論............................................. 58
第七章 參考文獻..........................................59
dc.language.isozh-TW
dc.subject韌帶zh_TW
dc.subject組織工程zh_TW
dc.subject奈米材料zh_TW
dc.subject電紡zh_TW
dc.subjectelectrospunen
dc.subjectnanofiberen
dc.subjectligamenten
dc.subjectelectrospinningen
dc.title電紡實驗在韌帶組織工程上的應用zh_TW
dc.titleNanofiber-based tissue-engineered scaffold for ligament replacementen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江鴻生,劉得任,鍾次文
dc.subject.keyword韌帶,電紡,奈米材料,組織工程,zh_TW
dc.subject.keywordligament,electrospinning,electrospun,nanofiber,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved