請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31652完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
| dc.contributor.author | Chih-Wen Liu | en |
| dc.contributor.author | 劉志文 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:16:44Z | - |
| dc.date.available | 2015-08-04 | |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | [1] Riser-Roberts, E., Remediation of Petroleum Contaminated Soils-Biological, Physical, and Chemical Processes. Lewis Publishers, pp. 1–135, 1998.
[2] Nicholas, R.B., Biotechnology in hazardous-waste disposal : an unfulfilled promise, Am. Soc. Microbiol. News, 53 (1987) 138–142. [3] Alexander, M., Biodegradation and Bioremediation. San Diego: CA Academic Press, 302, 1994. [4] Evans, G.M., Furlong, J.C. Contaminated Land and Bioremediation Environmental Biotechnology Theory and Application. England: John Wiley & Sons. Inc. 2003, pp. 91–94. [5] Scholze R. J. Jr., Wu, Y. C., Smith, E. D., Bandy, J. T., Basilico, J. V., In Proc. Int. Conf. Innovative Biological Treatment of Toxic Wastewaters, Arlington, VA. 1986. [6] 盧曉鳳. 油品之生物分解--煉油廠廢水之實際應用. 化學工程學系. 國立台灣大學. 碩士 2000. [7] 張緯農. 利用混合菌株(TN-4)處理異十九烷之研究. 化學工程學系. 國立台灣大學. 碩士 2003. [8] 何崇麟 . 利用單一菌株 (Rhodococcus erythropolis NTU1)與混合菌株 (TN-4)處理正十四烷之研究. 化學工程學系. 國立台灣大學. 碩士 2005. [9] 林詩凱. 利用混合菌株(TN-4)與單一菌株(Rhodococcus erythropolis NTU-1)處理正十六烷之研究. 化學工程學系. 國立台灣大學. 碩士 2005. [10] Calabrese, E.J., Kostecki, P.T. Soil Contaminated by Petroleum : Environmental and Public Health Effects. New York : Wiley-Liss, pp. 5-18, 1988. [11] Cooney, J.J., Silver, S. A., Beck, E. A. Factors influencing hydrocarbon degradation in three freshwater lakes. Microb. Ecol. 11 (1985) 127–137. [12] Juwarkar, A.A., Singh, S.K., Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Biotech. 9 (2010) 215–288. [13] Mackay, D., McAuliffe, C.D. Fate of hydrocarbon discharge at sea. Oil and Chem. Poll. 5 (1988) 1–20. [14] Canter, L.W., Knox, R.C. Ground Water Pollution Control. Lewis Publishers, Chelsea, MI. 526, 1985. [15] Ram, N.M., Bass, D.H., Falotico, R., Leahy, M. A decision framework for selecting remediation technologies at hydrocarbon-contaminated sites. J. Soil Contam. 2 (1993) 167–189. [16] Pandey, G., Jain, R. K. Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Appl. Environ. Microbiol. 68 (2002) 5789–5795. [17] van Hamme, J.D., Singh, A., Ward, O.P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67 (2003) 503–549. [18] Stempvoort, D.V., Biggar, K. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Reg. Sci. Technol. 53 (2008) 16–41. [19] Paje, M.L.F., Neilan, B.A., Couperwhite, L.A. Rhodococcus speices that thrives on medium saturated with liquid benzene. Microbiology 143 (1997) 2975–2981. [20] Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D., Lovley, D.R. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65 (1999) 3056–3062. [21] Vinas, M., Grifoll, M., Sabate, J., Solanas, A. M. Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J. Ind. Microbiol. Biotechnol. 28 (2002) 252–260. [22] 盧至人. 現地生物復育技術. 台灣土壤及地下水環境保護協會簡訊. 第五期, pp. 3–5, 2002. [23] Korda, A., Santas, P., Tenente, A., Santas, R. Petroleum hydrocarbon bioremediation:sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Appl. Microbiol. Biotechnol. 48 (1997) 677–686. [24] Penet, S., Marchal, R., Sghir, A., Monot, F. Biodegradation of hydrocarbon cuts used for diesel oil formulation. Appl. Microbiol. Biotechnol. 66 (2004) 40–47. [25] Thomas, J.M., Yordy, J.R., Amadoy, J.A., Alexander, M. Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52 (1986) 290–296. [26] James, E.B., Douglas. G.C. Degradation and Mineralization of the Polycyclic Aromatic Hydrocarbons Anthracene and Naphthalene in Intertidal Marine Sediments. Appl. Environ. Microbiol. 50 (1985) 81–90. [27] Goswami, P., Singh, H.D. Different Modes of Hydrocarbon Uptake by 2 Pseudomonas Species. Biotechnol. Bioeng. 37 (1991) 1–11. [28] Westgate, S., Bell, G., Halling, P. J. Kinetics of Uptake of Organic Liquid Substrates by Microbial-Cells - a Method to Distinguish Interfacial Contact and Mass-Transfer Mechanisms. Biotechnol. Lett. 17 (1995) 1013–1018. [29] Wodzinski, R.S., Johnson, M.J. Yields of Bacterial Cells from Hydrocarbons. Appl. Microbiol. 16 (1968) 1886–1891. [30] Sekelsky, A.M., Shreve, G.S. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol. Bioeng. 63 (1999) 401–409. [31] Ron, E.Z., Rosenberg, E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 13 (2002) 249–252. [32] Ratledge, C. Biodeterioration, Elsevier, London. Chapter 7: 219–236 pp. 1988. [33] Kile, D.E., Chiou, C.T. Water Solubility Enhancements of DDT and Trichlorobenzene by Some Surfactants Below and Above the Critical Micelle Concentration. Environ. Sci. Technol. 23 (1989) 832–838. [34] Rehm, H. J., Reed, G. Biotechnology. Weinheim, New York. Chapter 6a. 1987. [35] Mulligan, C. N., Yong, R.N., Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. geol. 60 (2001) 371–380. [36] Christofi, N., Kuyukina, M.S., Ivshina, I.B., Ritchkova, M.I., Philp, J.C., Cunningham, C.J. Biological treatment of crude oil contaminated soil in Russia. In Contaminated Land and Groundwater: Future Directions. Engineering Geology Special Publication, Geological Society. 14 (1998) 45–51. [37] Roy, P.K., Singh, H.D., Bhagat, S.D., Baruah, J.N. Characterization of Hydrocarbon Emulsification and Solubilization Occurring During the Growth of Endomycopsis Lipolytica on Hydrocarbons. Biotechnol. Bioeng. 21 (1979) 955–974. [38] Berthe-Corti, L., Ebenhoh, W. A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions. Biosystems 49 (1999) 161–189. [39] Lovley, D.R. Dissimilatory Fe and Mn Reduction. Microbiol. Rev. 55 (1991) 259–287. [40] Dietz, D.M. The intrusion of polluted water into a groundwater body and the biodegradation of a pollutant. In Proc. Conf. Control of Haz. Mater. Spills, pp. 24–236, 1980. [41] Fritsche, W., Hofrichter, M. Areobic degradation by microorganisms. Jena, Germany, pp. 124–158. 2000. [42] van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H.M., Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci.Technol. 58 (2003): 427–440. [43] Casella, S., Payne, W.J. Potential of denitrifiers for soil environment protection. FEMS Microbiol. Lett. 140 (1996) 1–8. [44] Alexander, M. Biodegradation and Bioremediation. San Diego: CA Academic Press, 302, 1994. [45] Berry, D.F., Francis, A.J., Bollag, J.M. Microbial-Metabolism of Homocyclic and Heterocyclic Aromatic-Compounds under Anaerobic Conditions. Microbiol. Rev. 51 (1987) 43–59. [46] Babel, W. Bioremediation of ecosystems by micro-organisms. Approaches for exploiting upper limits and widening bottlenecks. In Bioremediation: the Tokyo ’94 Workshop. Paris: Organization of Economic Co-operation and Development, pp. 101–115 pp, 1994. [47] Wentzel. A., Ellingsen, T.E., Kotlar, H.K., Zotchev, S.B., Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 76 (2007) 1209–1221. [48] Huesemann, M.H. Predictive Model for Estimating the Extent of Petroleum Hydrocarbon Biodegradation in Contaminated Soils. Environ. Sci. Technol. 29 (1995) 7–18. [49] Phillipi, G.T. On the depth , time and mechanism of origin of the heavy to medium gravity naphthenic crude oils. Geochim. Cosmochim. Acta 41 (1977) 33–35. [50] Lapinskas, J. Bacterial-Degradation of Hydrocarbon Contamination in Soil and Groundwater. Chem. Ind. 23 (1989) 784–789. [51] Westlake, D.W.S., Jobson, A.M., Cook, F.D. In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can. J. Microbiol. 24 (1978) 254–260. [52] Bartha, R., Atlas, R.M. The microbiology of aquatic oil spills. Adv. Appl. Microbiol. 22 (1977) 225–266. [53] Schunck, W.H., Mauersberger, S., Huth, J., Riege, P., Muller, H.G. Function and Regulation of Cytochrome-P450 in Alkane-Assimilating Yeast 1. Selective-Inhibition with Carbon-Monoxide in Growing-Cells. Arch. Microbiol. 147 (1987) 240–244. [54] Wong, L.L. Cytochrome P450 monooxygenases. Curr. Opin. Chem. Biol. 2 (1998) 263–268. [55] Solano-Serena, F., Marchal, R., Heiss, S., Vandecasteele, J.P. Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J. Appl. Microbiol. 97 (2004) 629–639. [56] Watkinson, R.J. Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1 (1990) 79–92. [57] Nieder, M., Shapiro, J. Physiological Function of Pseudomonas-Putida Ppg6 (Pseudomonas-Oleovorans) Alkane Hydroxylase - Monoterminal Oxidation of Alkanes and Fatty-Acids. J. Bacteriol. 122 (1975) 93-98. [58] Kester, A.S., Foster, J.W. Diterminal Oxidation of Long-Chain Alkanes by Bacteria.' Journal of Bacteriology 85(1963) 859–869. [59] Leadbetter, E.R., Foster, J.W. Bacterial Oxidation of Gaseous Alkanes. Arch. Microbiol. 35 (1960) 92–104. [60] Davis, J.B. Petroleum microbiology. New York: Elsevier Publishing Co., pp. 2–13, 1967. [61] McKenna, E.J., Kallio, R.E. Microbial Metabolism of Isoprenoid Alkane Pristane –Alpha–Methylglutarate; 4, 8, 12-Trimethyltridecanoate and Fatty Acid- Metabolism. Proceedings of the National Academy of Sciences of the United States of America. 68 (1971) 1552–1554. [62] Pirnik, M.P., Atlas, R.M., Bartha, R. Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes. J. Bacteriol. 119 (1974) 868–878. [63] Sakai, Y., Takahashi, H., Wakasa, Y., Kotani, T., Yurimoto, H., Miyachi, N., van Veldhoven, P.P., Kato, N. Role of alpha-methylacyl coenzyme A racemase in the degradation of methyl-branched alkanes by Mycobacterium sp. strain P101. J. Bacterial. 186 (2004) 7214–7220. [64] Alvarez, H.M. Relationship between beta–oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int. Biodeter. Biodegr. 52 (2003) 35–42. [65] Na, K.S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H., Kato, J. Isolation and characterization of benzene–tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99 (2005) 378–382. [66] Kim, D., Kim, Y.S., Jung, J.W., Zylstra, G.J., Kim, Y.M., Kim, S.K., Kim, E. Regioselective oxidation of xylene isomers by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 223 (2003) 211–214. [67] Kim, D., Kim, Y.-S., Kim, S. K., Kim, S.W., Zylstra, G.J., Kim, Y.M., Kim, E. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 68 (2002) 3270–3278. [68] Chang, Y.I., Su, C. Y. Flocculation behavior of Sphingobium chlorophenolicum in degrading pentachlorophenol at different life stages. Biotechnol. Bioeng. 82 (2003) 843–850. [69] Bossier, P., Verstraete, W. Triggers for microbial aggregation in activated sludge. Appl. Microbiol. Biotechnol. 45 (1996) 1–6. [70] Buswell, C.D., Herlihym, Y.M., Marsh, P.D., Keevil, C.W. Leach, S.A. Coaggregation amonget aquatic biofilm bacteria. J. Appl. Microbiol. 83 (1997) 477–484. [71] Iwabuchi, N., Sunairi, M., Anzai, H., Morisaki, H., Nakajima, M. Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids and Surfaces B: Biointerface, 30 (2003) 51–60. [72] de Carvalho, C.C.C.R., da Fonseca, M.M.R. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14. FEMS Microbiol. Ecol. 51 (2005) 389–399. [73] Espuny, M., Egido, S., Rodó N,I., Manresa, A. Mercadé, M. Nutritional requirements of a biosurfactant producing strain Rhodococcus sp. 51T7. Biotechnol. Lett. 18 (1996) 521–526. [74] Lang, S., Philp, J.C. Surface-active lipids in Rhodococci. Antonie Van Leeuwenhoek 1998, 74 (1998) 59–70. [75] Komarov, E.V., Ganin, P.G. Zeta-potential of n-alkane emulsion droplets and its role in substrate transport into yeast cells. Appl. Biochem. Microbiol. 40 (2004) 272–279. [76] Kuyukina, M.S., Ivshina, I.B., Philp, J.C., Christofi, N., Dunbar, S.A., Ritchkova, M.I. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods, 46 (2001) 149–156. [77] Wiącek, A. E. Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and surfaces A: Physicochemical and engineering aspects. 293 (2007) 20–27. [78] Gong, X.Y., Luan, Z.K., Pei, Y.S. Culture conditions for flocculant production by Paenibacillus polymyxa BY-28. J. Environ. Sci. Health, Part A, Environ. Sci. Eng. 38 (2003) 657–669. [79] Ly, M.H., Naitali-Bouchez, M., Meylheuc, T. Importance of bacterial surface properties to control the stability of emulsions. Int. J. Food Microbiol. 112 (2006) 26–34. [80] Botero, A.E.C., Torem, M.L., de Mesquita, L.M.S. Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Miner. Eng. 21 (2008) 83–92. [81] Ofir, E., Oren, Y., Adin, A. Electroflocculation: the effect of zeta-potential on particle size. Desalination 204 (2007) 33–38. [82] Finnerty, W.R. The biology and genetics of the genus Rhodococcus. Annu. Rev. Microbiol. 46 (1992) 193–218. [83] Larkin, M.J., Kulakov, L.A., Allen, C.C.R. Biodegradation and Rhodococcus -masters of catabolic versatility. Curr. Opin. Biotech. 16 (2005) 282–290. [84] de Carvalho, C. C. C. R. and da Fonseca, M. M. R. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 2005, 67, 715-726. [85] de Carvalho, C.C.C.R., Parreno-Marchante, B., Neumann, G., da Fonseca, M. M. R., Heipieper, H.J. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl. Microbiol. Biotechnol. 67 (2005) 383–388. [86] de Carvalho, C.C.C.R., da Fonseca, M.M.R. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14. FEMS Microbiol. Ecol. 51 (2005) 389–399. [87] Neu, T. R. Significance of bacterial surface-active compounds in interaction of bacteria with interface. Microbiol. Rev. 1996, 60, 151-166. [88] Sutcliffe, I.C. Cell envelope composition and organisation in the genus Rhodococcus. Antonie van Leeuwenhoek, 74 (1998) 49–58. [89] Lichtinger, T., Reiss, G., Benz, R. Biochemical indentification and biophysical characterization of a channel-forming protein Rhodococcus erythropolis. J. Bacteriol. 182 (2000) 764–770. [90] Peng, F., Liu, Z., Wang, L., Shao, Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 102 (2007) 1603–1611. [91] Sayavedra-Soto, L.A., Chang, W. N., Lin, T. K. and Liu, H. S. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp. Biotechnol. Prog. 2006, 22, 1368-1373. [92] 張緯農. 對碳氫化合物生物降解與其細胞聚集現象之研究. 化學工程學系. 國立台灣大學. 博士. 2010. [93] 劉志文. 微生物生物復育過程中細胞聚集現象之研究. 化學工程學系. 國立台灣大學. 碩士 2007. [94] Chang, W.N., Liu, C.W., Liu, H.S. Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis, Process Biochem. 44 (2009) 955–962. [95] Liu, C.W., Chang, W.N., Liu, H.S. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors, Process Biochem. 46 (2011) 202–209. [96] 謝惠敏.利用Rhodococcus erythropolis NTU-1細胞聚集現象移除正十六烷. 化學工程學系. 國立台灣大學. 碩士 2011. [97] Gaudy, A.F., Elizabeth, T.G. Microbiology for Environmental Scientist and Engineers, McGraw-Hill, Inc. 1980. [98] Heald, S.C., Brandão, P.F.B., Hardicre, R., Bull, A.T., Physiology, biochemistry and taxonomy of deep-sea nitrile-metabolizing Rhodococcus strains, Anton. Leeuw. Int. J. G. 80 (2001) 169–183. [99] Torres, L.G., Rojas, N., Bautista, G., Iturbe, R., Effect of temperature, and surfactant’s HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochem. 403 (2005) 296–302. [100] Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., Okuyama, H., Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr. Microbiol. 49 (2004) 415–22. [101] 梁茂實. 微生物生物復育時細胞聚集與氫離子釋放的應用. 化學工程學系. 國立台灣大學. 碩士 2007. [102] Przystas, W., Pasadakis, N., Kalogerakis, N. Degradation of crude oil in seawater and sand by mixed bacterial cultures, Arch. Environ. Prot. 32 (2006) 43–57. [103] Karpenko, E.V., Vil’danova-Martsishin, R.I., Shcheglova, N.S., Pirog, T.P. Voloshina, I.N. The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants, Appl. Biochem. Microbiol. 42 (2006) 156–159. [104] Zvyagintseva, I.S., Poglazova, M.N., Gotoeva, M.T., Belyaev, S.S. Effect on the medium salinity on oil degradation by nocardioform bacteria, Microbiology 70 (2001) 652–656. [105] Atlas, R.M., Microbial degradation of petroleum hydrocarbons: an environmental perspective, Microbiol. Rev. 45 (1981) 180–209. [106] Komarova, T.I., Koronelli, T.V., Timokhina, E.A. The role of low-molecular-weight nitrogen compounds in the osmotolerance of Rhodococcus erythropolis and Arthrobacter globiformis, Microbiology 71 (2002) 139–142. [107] Gilan, I., Hadar, Y., Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber, Appl. Microbiol. Biotechnol. 65 (2004) 97–104. [108] Albert, G. M., John, W. F., Michael, P. S. Microbial physiology. New York: Wiley-Liss, pp. 220, 2002. [109] Brakstad, O.G., Bonaunet, K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation, Biodegradation 17 (2006) 71–82. [110] Michaud, L., Lo Giudice, A., Saitta, M., De Domenico, M., Bruni, V. The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment, Mar. Pollut. Bull. 49 (2004) 405–409. [111] Li, Y.Q., Liu, H.F., Tian, Z.L., Zhu, L.H., Wu, Y.H., Tang, H.Q. Diesel Pollution Biodegradation: Synergetic Effect of Mycobacterium and Filamentous Fungi. Biomed. Environ. Sci. 21 (2009) 181–187. [112] Lee, M., Kim, M.K., Singleton, I., Goodfellow, M., Lee, S.T. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100 (2006) 325–333. [113] Vieira, P.A., Vieira, R.B., de Franca, F.P., Cardoso, V.L. Biodegradation of effluent contaminated with diesel fuel and gasoline. J. Hazard. Mater. 140 (2007) 52–59. [114] Lin, X.Z., Yang, B.J., Shen, J.H., Du, N. Biodegradation of Crude Oil by an Arctic Psychrotrophic Bacterium Pseudoalteromomas sp. P29. Curr. Microbiol. 59 (2009) 341–345. [115] Sathishkumar, M., Binupriya, A.R., Baik, S.H., Yun, S.E. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean-Soil Air Water 36 (2008) 92–96. [116] Plaza, G.A., Lukasik, K., Wypych, J., Nalecz-Jawecki, G., Berry, C., Brigmon, R.L., Biodegradation of crude oil and distillation products by biosurfactant-producing bacteria. Pol. J. Environ. Stud. 17 (2008) 87–94. [117] Razak, C., Wang, W., Rahman, S., Basri, M., Salleh, A. Isolation of the crude oil degrading marine Acinetobacter sp. E11. Acta Biotechnol. 19 (1999) 213–223. [118] Uchida, Y., Misawa, S., Nakahara, T., Tabuchi, T. Factors affecting the production of 12 succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric. Biol. Chem. 53 (1989) 765–769. [119] Pruden, A., Sedran, M., Suidan, M., Venosa. A. Biodegradation of MTBE and BTEX in an aerobic fluidized bed. Water Sci. Technol. 47 (2003)123–128. [120] Suzuki, T., Yamaya, S. Removal of hydrocarbons in a rotating biological contactor with biodrum. Process Biochem. 40 (2005) 3429–3433. [121] MacLeod, C.T., Daugulis, A.J. Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem. 40 (2005) 1799–1805. [122] Alvarez, P.J., Vogel, T.N. Substrate interactions of benzene, toluene and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57 (1991) 2981–2985. [123] Li, X., Li, Pi., Lin, X., Zhang, C., Li, Q., Gong, Z. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases, J. Hazard. Mater. 150 (2008) 21–26. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31652 | - |
| dc.description.abstract | 生物復育為常見之石油污染物處理方法,但通常需要花費數周至數月的時間才能達到良好的移除效果,因此如何加速污染物移除速率為一重要之課題。本實驗室先前研究中,利用自石油污染污泥分離之Rhodococcus erythropolis NTU-1菌株獨特之生物降解和生物吸附能力,結合生物和物理移除方法,能在2天內快速移除超過90 %以上之單一組成碳氫化合污染物,如直鏈烷和異烷類。本研究主要在既有基礎上,進一步以實際應用NTU-1進行生物復育實驗。
在以高鹽度和海水批次培養實驗中,NTU-1細胞能夠維持其生物降解和生物吸附能力。在高鹽度 (1.2-3.6 % NaCl)實驗中,經過68小時培養後,能夠移除80-90 %之正十六烷 (2000 ppmv),其中約50-60 %來自生物降解,30-35 %為生物吸附作用。在海水培養基實驗,經過140小時培養後,NTU-1亦能夠移除50 %之污染物。若添加微量NB (0.24 g/L)於培養基中,能夠有效提升污染物移除速率和縮短生物聚集體形成之時間。 在以1 % (10000 ppmv)之柴油和原油作為碳源之實驗中,NTU-1顯示能夠利用C10-C32之正直鏈烷,經過4天培養,約90 %之污染物亦能被移除,其中約30 %來自生物降解而60 %為生物吸附。此外,即便在高濃度 (1-10 %)之正十六烷情況下,NTU-1仍能維持其碳氫化合物之降解能力。 在饋料批次生物反應器系統中,在適當酸鹼值調整、通氣、培養基置換和間歇性進料等操作策略下,不論以單一碳源 (正十六烷)或混合物 (柴油和原油),皆能夠成功操作2-4周以上且達到85 %以上的移除效率,其中約25-35 %來自生物降解而50-60 %來自於生物吸附。 此外,本研究亦發現在NTU-1進行生物復育過程中,氫離子釋放量和生物降解量呈現一線性關係,且進一步利用此關係發展一簡單估算碳氫化合物生物降解量之方法,取代傳統費時且成本較高的有機溶劑萃取並利用氣相層析儀分析之方法。 因此本實驗結果顯示Rhodococcus erythropolis NTU-1菌株的確具有良好的潛力實際應用於石油污染環境之生物復育程序中。 | zh_TW |
| dc.description.abstract | From our previous reports, Rhodococcus erythropolis strain NTU-1 isolated from oil-contaminated sludge efficiently removed 90 % of hydrocarbon pollutants such as normal and branched alkanes within 2 days via biodegradation and biosorption. In this study, NTU-1 was further evaluated for the purpose of practical application.
R. erythropolis NTU-1 maintained its biodegradability and the formation of biofloccules characteristic under saline conditions (1.2-3.6% NaCl), as well as in sea water. After 68 h of incubation under saline conditions, 80-90 % removal of n-hexadecane (2000 ppmv) was achieved with 50-60% of biodegradation and 30-35% of biosorption. In sea water, about 50 % of n-hexadecane was removed within 140 h. Addition of NB (0.24 g/L) in culture medium facilitated the cell growth and also aggregation. Besides, in batch cultures with 1 % diesel or crude oil, approximately 90% removal was achieved within 4 days (about 30 % of biodegradation and 60 % of biosorption). NTU-1 could degrade C10–C32 of n-alkanes in diesel oil or crude oil. Moreover, NTU-1 utilized the n-hexadecane at relatively high concentration (1-10 %) with fast degradation rate. In bioreactors with aeration, medium exchange and pH adjustment, an intermittent feed (42000 ppmv n-hexadecane; 35000 ppmv diesel and crude oil) resulted in approximately 85-90 % removal within 2-4 weeks (25-35% of biodegradation and 50-60 % of biosorption). During the biodegradation, the amount of H+ ions released corresponded well to the carbon-chain length of the n alkanes (either n-tetradecane, n-hexadecane or n-octadecane). With the relationship, n-alkanes consumption could be reasonably estimated by monitoring pH changes in the medium. This procedure presented a convenient alternative as compared with some complex or expensive method such as organic solvent extractions and gas chromatography analysis. The amount of H+ ions released correlated well with the carbon-chain length of the n alkanes. The results showed that Rhodococcus erythropolis NTU-1 possessed great potential in bioremediaition process of sites polluted with petroleum pollutants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:16:44Z (GMT). No. of bitstreams: 1 ntu-100-D96524009-1.pdf: 9944210 bytes, checksum: 1b0220f9f85a4f18bdfa9790045023ec (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………I
Abstract…………………………………………………………………..……………III 目錄……………………………………………………………...……………………...V 圖目錄………………………………………………………………………......……VIII 表目錄…………………………………………………………………..……..…..…XIII 照片目錄……………………………………………………………………….….…XIV 第一章 緒論…………………………………………………………………………….1 第二章 文獻回顧………………………………………………………………….……4 2.1 石油碳氫化合物介紹和其對環境之影響………………………..…………..4 2.2 石油碳氫化合物之復育處理…………………………………………………7 2.3 石油碳氫化合物之生物復育………………………………………………..14 2.3.1 生物復育法之簡介…………………………………………………….14 2.3.2 碳氫化合物之攝取機制…………………………………………….....19 2.3.3 碳氫化合物之分解模式………………………………………….……24 2.4 碳氫化合物之代謝途徑和機制………………………………...…………...30 2.4.1 直鏈烷之氧化和代謝途徑…………………………………………….31 2.4.2 支鏈烷之氧化和代謝途徑………………………………………….…35 2.4.3 芳香族碳氫化合物之氧化和代謝途徑………………………….……39 2.5 微生物之細胞聚集現象…………………………………………………..…42 2.6 實驗菌株介紹…..…………………………………...…………………….…47 2.6.1 Rhodococcus erythropolis菌株之簡介…………………………...…….47 2.6.2 R. erythropolis NTU-1菌株之生物降解和生物吸附現象……....…….51 第三章 實驗材料與方法 …………………………………………………………….60 3.1 實驗菌株…………………………………………………………..…………60 3.2 培養基組成…………………………………………………………………..64 3.2.1 不同緩衝能力之基礎礦物培養基……………………………….……64 3.2.2 高鹽度礦物培養基和海水性質……………………………………….68 3.2.3 菌株活化培養基……………………………………………..………...69 3.2.4 菌株保存培養基…………………………………………………….....70 3.2.5 記數平板培養基……………………………………………………….71 3.2.6 實驗藥品和儀器…………………………………………………….....71 3.3 實驗方法……………………………………………………………….….....72 3.3.1 菌株的活化與培養………………………………………………….....72 3.3.2 批次生物復育實驗之操作流程和碳氫化合物之測定…………….....77 3.3.3 不同條件下之批次生物復育實驗………………………………….....83 3.3.4 饋料批次生物反應器設置與操作…………………………………….84 第四章 結果與討論……………………………………………………………….....88 4.1 Rhodococcus erythropolis strain NTU-1在不同鹽度礦物培養基及海水中之生物復育測試………………………………………………………...............89 4.1.1 NTU-1在高鹽度礦物培養基之正十六烷生物復育實驗……..............89 4.1.2添加微量Nutrient Broth於含正十六烷之高鹽度礦物培養基,對於 NTU-1生物降解及包覆能力之影響……………………………...........96 4.1.3在海水培養基中以正十六烷和微量NB為碳源之生物復育實驗…..102 4.1.4結果討論…..…………………………………………………………...106 4.2 Rhodococcus erythropolis strain NTU-1以1% (v/v)之柴油和原油為碳源之生 物復育實驗………………………………………………………….............111 4.2.1在礦物培養基中以1 %柴油為碳源之生物復育實驗…………..........112 4.2.2在礦物培養基中以1 %原油為碳源之生物復育實驗………………..118 4.2.3結果討論…………………………………………………………….....124 4.3 Rhodococcus erythropolis strain NTU-1以高濃度之正十六烷為碳源之生物復育實驗………………………………………………………………….....126 4.3.1 NTU-1在不同緩衝能力礦物培養基中以正十六烷為碳源之生物復育 實驗………………………………………………………………….....127 4.3.2 NTU-1以高濃度之正十六烷為碳源之生物復育實驗……………....133 4.3.3結果討論……………..………………………………………...............139 4.4饋料批次生物反應器之設計與操作……..………………………………....141 4.4.1以正十六烷作為碳源之饋料批次生物反應器操作………………….142 4.4.2改變通氣量對於饋料批次生物反應器操作之影響………………….147 4.4.3以柴油和原油作為碳源之饋料批次生物反應器操作……………….153 4.4.4結果討論……..…………………………………………………..…….158 4.5碳氫化合物生物復育過程中氫離子釋放之探討和應用………………..…161 4.5.1生物復育過程中氫離子累積量和生物降解量之關係探討和應用….161 4.5.2氫離子累積量和生物降解量之關係應用於饋量批次生物反應器….165 第五章 結論………………………………………………………………….………169 參考文獻……………………………………………………………………………...176 附錄1………………………………………………………………………………….190 附錄2 …………………………………………………………………………………193 附錄2-(1) Rhodococcus erythropolis NTU-1分別在滅菌及未滅菌的海水培養基 中,以正十六烷為碳源之生物復育實驗……………………………193 附錄2-(2) Rhodococcus erythropolis NTU-1 在不同體積之錐形瓶中,以相同濃度之正十六烷為碳源之生物復育實驗……………………………...196 圖目錄 第二章 圖2.3.1-1污泥相生物復育反應器系統……………………………………………….18 圖2.3.2-1微生物細胞攝取有生物界面活性劑附著之碳氫化合物示意圖……..…...21 圖2.3.2-2 微胞粒子 (CMC)之結構示意圖………………………………………..…22 圖2.3.3-1 細胞內碳氫化合物分解代謝作用之流程圖,實線代表carbon flux、虛線 代表O2 flux及電子接收者…………………………………………..……25 圖2.3.3-2好氧性微生物降解碳氫化合物之主要流程……..………………………...26 圖2.3.3-3好氧性及厭氧性細菌在降解長碳鏈碳氫化合物過程之比較………….…29 圖2.4.1-1正直鏈烷 (n-alkanes)的降解及代謝路徑……………………………….…32 圖2.4.1-2雙末端氧化之代謝路徑…..………………………………………………...34 圖2.4.1-3次末端氧化之代謝路徑……………………………………………….……34 圖2.4.2-1菌株Corynebacterium sp.對異十九烷之代謝途徑……………………..…35 圖2.4.2-2菌株Brevibacterium erythrogenes對於異十九烷的代謝途徑……….……37 圖2.4.2-3無孢子放射菌(Actinomycetales))對於各種碳氫化合物之代謝途徑……...38 圖2.4.3-1 Rhodococcus opacus利用雙氧化酶機制降解苯之代謝路徑…..……….....39 圖2.4.3-2 Rhodococcus sp. strain DK17利用雙氧化酶降解甲苯之代謝路徑…….…40 圖2.4.3-3 Rhodococcus sp. strain DK17 降解二甲苯 (o-xylene)之代謝路徑….……41 圖2.6.1-1由Rhodococcus erythropolis菌株催化發生之氧化反應……………….…49 圖2.6.1-2 Rhodococcus菌屬之細胞壁組成示意圖……………………………..……50 圖2.6.2-1在培養基酸鹼值4與7之條件下,R. erythropolis NTU-1對正十六烷的細 胞疏水性 (MATH)測試……..…………………………………………...…53 圖2.6.2-2菌株R. erythropolis NTU-1在不同酸鹼值下之細胞表面電位變化….….55 圖2.6.2-3 R. erythropolis NTU-1生物聚集體生成機制示意圖。(A) NTU-1細胞貼 附於油滴形成白色棉絮狀顆粒 ; (B) 棉絮顆粒以油滴作為連結,進而形成生物聚集體……………………………………………………………….....57 第三章 圖3.2.1-1液態礦物培養基之緩衝能力滴定曲線圖 (以1N NaOH滴定).………..…67 圖3.3.1-1計數平板培養基之使用及計算………………………………….....………76 圖3.3.2-1石油碳氫污染物之細胞包覆量、生物降解量、總移除量、殘餘在培養基 中之量的計算方法及定義之示意圖…………………...…………………79 圖3.3.2-2 1 %柴油之氣相層析分析圖形………………………………………...……80 圖3.3.2-3 1 %原油之氣相層析分析圖形……………………………………...………81 圖3.3.4-1饋料批次生物反應器設置圖………………………………………………85 第四章 圖4.1.1-1 以2000 ppmv正十六烷為碳源,在不同礦物培養基鹽度中R. erythropolis NTU-1之細胞生長情況……………………………………………………91 圖4.1.1-2 R. erythropolis NTU-1在不同礦物培養基鹽度中,以2000 ppmv正十六烷為碳源培養時,培養基酸鹼值的變化………………………………………92 圖4.1.1-3 以2000 ppmv正十六烷為碳源,在不同鹽度礦物培養基中R. erythropolis NTU-1之生物降解和生物吸附情況。(a) 1.2 %; (b) 2.4 %; (c) 3.6 %; (d) 5 %……………………………………………………………………………93 圖4.1.2-1以2000 ppmv 正十六烷和0.24 g/L NB為碳源,在不同礦物培養基鹽度中R. erythropolis NTU-1之細胞生長情況…………………………..……98 圖4.1.2-2 R. erythropolis NTU-1在不同礦物培養基鹽度中,以2000 ppmv正十六烷和0.24 g/L NB為碳源培養時,培養基酸鹼值的變化………………....…99 圖4.1.2-3 以2000 ppmv正十六烷和0.24 g/L NB為碳源,在不同鹽度礦物培養基中R. erythropolis NTU-1之生物降解和生物吸附情況。(a) 1.2 %; (b) 2.4 %; (c) 3.6 %; (d) 5 %…….……………………………………..…………100 圖4.1.3-1 在海水培養基中以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之細胞生長情況。(■) 未添加NB; (●) 添加NB (0.24 g/L)….…………103 圖4.1.3-2 在海水培養基中以2000 ppmv正十六烷為碳源,R. erythropolis NTU-1的生物降解和生物吸附情況; (a) 未添加NB; (b) 添加NB (0.24 g/L)...104 圖4.1.4-1 同時提供E. coli葡萄糖(glucose)和乳糖(lactose)作為營養源之生長實驗中,細胞生長和碳源濃度關係變化………………………………...……109 圖4.2.1-1 以1 % (10000 ppmv)柴油為碳源進行生物復育實驗,培養基酸鹼值變化和R. erythropolis NTU-1細胞生長情況。(■) 細胞生長量; (●) 培養基酸鹼值…………………………………………………….…………………113 圖4.2.1-2 以1 % (10000 ppmv)柴油為碳源,培養過程中,殘餘在培養基和被包覆於生物聚集體中之柴油氣相層析圖。(a) 第0天培養時,初始柴油量; (b) 經過3天培養,殘餘在培養基之柴油; (c) 經過3天培養,被包覆於生物聚集體之柴油; (d) 經過4天培養,殘餘在培養基之柴油; (e) 經過4天培養,被包覆於生物聚集體之柴油…………………………...……………116 圖4.2.1-3 以1% (10000 ppmv)柴油為碳源,R. erythropolis NTU-1之生物降解和生物吸附情況……………………………………………………….………118 圖4.2.2-1 以1 % (10000 ppmv)原油為碳源進行生物復育實驗,培養基酸鹼值變化和R. erythropolis NTU-1細胞生長情況。(■) 細胞生長量; (●) 培養基酸鹼值........………..............................………………………………...………119 圖4.2.2-2 以1% (10000 ppmv)原油為碳源,培養過程中,殘餘在培養基和被包覆於生物聚集體中之柴油氣相層析圖。(a) 第0天培養時,初始原油量; (b) 經過2天培養,殘餘在培養基之原油。(c) 經過2天培養,被包覆於生物聚集體之原油……………………………………………………….………122 圖4.2.2-3 以1% (10000 ppmv)原油為碳源,R. erythropolis NTU-1之生物降解和生物吸附情況……………………………………………………………….…123 圖4.3.1-1 R. erythropolis NTU-1在不同緩衝能力培養基中以 2000 ppmv之正十六烷為碳源進行生物復育實驗時,培養基酸鹼值變化情況……...………128 圖4.3.1-2 R. erythropolis NTU-1在不同緩衝能力培養基中以 2000 ppmv之正十六烷為碳源進行生物復育實驗時,細胞生長之情況…………………...……130 圖4.3.1-3 在不同緩衝能力礦物培養基中以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之生物降解和生物吸附情況。(a) MSM-1; (b) MSM-2; (c) MSM-3…………………………………………………………...……131 圖4.3.2-1 R. erythropolis NTU-1以不同濃度之正十六烷為碳源進行生物復育實驗時,培養基酸鹼值變化情況…………………………………………….……134 圖4.3.2-2 R. erythropolis NTU-1以不同濃度之正十六烷為碳源進行生物復育實驗時,細胞生長情況……………………………………………….………135 圖4.3.2-3 R. erythropolis NTU-1以不同濃度之正十六烷為碳源進行生物復育實驗時,其生物降解情況………………………………………………...……136 圖4.3.1-4 以10000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之生物降解和生物吸附情況……………………………………………………….……139 圖4.4.1-1 在生物反應器中,R. erythropolis NTU-1以正十六烷為碳源,在通氣量為1 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 培養基內正十六烷之累積添加量、生物降解量和生物吸附量……………...……146 圖4.4.2-1 在生物反應器中,R. erythropolis NTU-1以正十六烷為碳源,在通氣量為2 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 培養基內正十六烷之累積添加量、生物降解量和生物吸附量……………………..150 圖4.4.2-2 在生物反應器中,R. erythropolis NTU-1以正十六烷為碳源,在通氣量為6 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 培養基內正十六烷之累積添加量、生物降解量和生物吸附量………………...……151 圖4.4.2-3 在不同通氣量情況下,在生物反應器內R. erythropolis NTU-1對於正十六烷之生物降解情況………………………………………………….……153 圖4.4.3-1 在生物反應器中,R. erythropolis NTU-1以柴油為碳源,在通氣量為1 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 培養基內正十六烷之累積添加量、生物降解量和生物吸附量……………………………...156 圖4.4.3-2 在生物反應器中,R. erythropolis NTU-1以原油為碳源,在通氣量為1 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 培養基內正十六烷之累積添加量、生物降解量和生物吸附量………………………...……157 圖4.5.1-1 R. erythropolis NTU-1在不同緩衝能力礦物培養基中以正十六烷為碳源,培養過程中,培養基之氫離子累積量與生物降解量關係圖…………...162 圖4.5.2-1 在生物反應器中,R. erythropolis NTU-1以正十六烷為碳源,在通氣量為1 vvm之操作過程中 (top) 培養基之酸鹼值變化; (bottom) 分別由估算和直接測量所得之正十六烷生物降解量…………………….…………168 第五章 圖5-1 利用R. erythropolis NTU-1處理石油污染物之循環流程……………...……175 附錄1 附錄圖(A) NTU-1菌株在Nutrient Broth中的生長曲線圖…………………………190 附錄圖(B) 波長600nm下的OD值與細胞乾重關係圖……………………………190 附錄圖(C) 正十六烷濃度校正曲線…………………………………………………191 附錄圖(D) 高濃度之正十六烷校正曲線……………………………………………191 附錄圖(E) 柴油濃度校正曲線………………………………………………………192 附錄圖(F) 原油濃度校正曲線………………………………………………………192 附錄2 附錄圖2.1-1在海水培養基中以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之細胞生長情況。(■) 經過滅菌處理; (●) 未經滅菌處理之海水………………………………………………………………...……194 附錄圖2.1-2在海水培養基中以2000 ppmv正十六烷為碳源,R. erythropolis NTU-1的生物降解和生物吸附情況; (a) 經過滅菌處理; (b)未經滅菌處理之海水………………………………………………………………...…195 附錄圖2.2-1 R. erythropolis NTU-1在培養基中以2000 ppmv之正十六烷為碳源,培養基酸鹼值變化情況。(■) 容積50 mL錐形瓶; (●) 容積250 mL錐形瓶……………………………………………………………...……197 附錄圖2.2-2在培養基中以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之細胞生長情況。(■) 容積50 mL錐形瓶; (●) 容積250 mL錐形瓶……………………………………………………………………...197 附錄圖2.2-3在培養基中以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1之生物降解情況。(■) 容積50 mL錐形瓶; (●) 容積250 mL錐形瓶……………………………………………………………………...198 表目錄 第二章 表2.2-1 各種復育處理程序對於不同碳氫化合污染物之適用性……………………7 表2.2-2 各種復育技術特點和應用性之整理…………………………………..……10 表2.2-3 各種物理化學處理技術與生物處理程序的應用與比較………………..…12 表2.2-4地下水污染之各種物理化學處理應用以及生物處理程序…………………13 表2.3.1-1實際應用之現場生物復育方法……………..……………………...………16 表2.3.2-1各種碳氫化合物在水中之溶解度……………………………………….…19 表2.3.2-2不同微生物所產生之生物界面活性劑分類………………………….……23 表2.4.1-2 Endomycopsis Lypolttica在降解正烷類過程中,正烷類溶解度提升情況. 24 表2.3.3-1以好氧模式分解碳氫化合物之微生物………..…………………………...27 表2.3.3-2各種生物代謝程序的氧化還原反應式及氧化還原電位…………….……28 表2.4-1碳氫化合物被微生物降解之難易程度…………..……………………..……30 表2.5-1 Rhodococcus菌株聚集性和菌落性質之關係表……………………..………43 表2.6.2-1 R. erythropolis NTU-1在以正十六烷作為唯一碳源利用時,細胞表面脂肪酸 (Fatty Acids)量之變化情況..……………………….…………….……54 第三章 表3.1-1 Rhodococcus erythropolis NTU-1主要脂肪酸成分與含量百分比 [食品工業發展研究所鑑定報告] ………………………………………………….……63 表3.2.1-1不同緩衝能力之液態培養基組成表………………………………………65 表 3.2.1-2 Trace salt solution組成表……………………………………………..……66 表3.2.2-1高鹽度液態培養基組成表……..………………………………………......68 表 3.2.2-2 福隆海水之基本特性及組成………..……………………………………69 表3.2.4-1菌株保存培養基組成表……………………………………………….…...70 第四章 表4.2-1 R. erythropolis strain NTU-1以不同碳源培養之細胞生長情況………...…112 表4.2.3-1 近幾年內,以柴油和原油為碳源之生物復育研究………………....…..124 表4.5.1-1 R. erythropolis NTU-1以不同正直鏈烷為碳源,培養基內氫離子累積量和生物降解量之關係及其比值…………………………………………...…163 照片目錄 第二章 照片2.1-1原油洩漏對於海洋生態環境之污染情況……………………………..……6 照片2.6.2-1 以不同濃度之正十六烷為碳源,R. erythropolis NTU-1在培養基中所 形成之生物聚集體外觀……………………………………………….…52 照片2.6.2-2 R.erythropolis NTU-1 以2000 ppmv之正十六烷作為碳源培養,在不同培養時間下,NTU-1細胞貼附於OTE疏水性載玻片之情況…………56 照片2.6.2-3以掃描式電子顯微鏡 (SEM, Scanning electron microscope)觀察R. erythropolis NTU-1之生物聚集體影像……………………….……..…..58 第三章 照片3.1-1 顯微鏡下的Rhodococcus erythropolis NTU-1……………………………61 照片3.1-2 以穿透式顯微鏡 (TEM)觀察Rhodococcus erythropolis NTU-1細胞之相互糾結現象 (x 5000)………………………………………………………62 照片3.3.1-1 計數平板培養基上Rhodococcus erythropolis NTU-1菌落之外觀……75 第四章 照片4.1.1-1 在1.2 %、2.4 %和3.6 %高鹽度礦物培養基中,以2000 ppmv正十六烷為碳源,R. erythropolis NTU-1形成之生物聚集體外觀。(a) 1.2-3.6 %培養基鹽度,經過32小時培養; (b) 1.2 % 培養基鹽度,經過56小時培養; (c) 2.4 %培養基鹽度,經過56小時培養; (d) 3.6 %培養基鹽度,經過68小時培養……………………………………………..……95 照片4.1.2-1 在1.2 %、2.4 %和3.6 %高鹽度礦物培養基中,以2000 ppmv正十六烷和0.24 g/L NB為碳源時,經過 56小時培養後,R. erythropolis NTU-1形成之生物聚集體外觀…………………………………....…101 照片4.1.3-1 在海水培養基中,以2000 ppmv正十六烷為碳源,R. erythropolis NTU-1形成之生物聚集體外觀。(a) 未添加NB (經過92小時培養); (b) 添加NB (經過32小時培養)…………………………………….……....…105 照片4.2.1-1 以1 % (10000ppmv)柴油為碳源,R. erythropolis NTU-1在培養基中所形成之生物聚集體外觀。(a) 經過3天培養; (b) 經過4天培養…..114 照片4.2.2-1 以1 % (10000 ppmv)原油為碳源,R. erythropolis NTU-1在培養基中所形成之生物聚集體外觀。(a) 經過1天培養; (b) 經過2天培養……120 照片4.3.1-1 在不同緩衝能力礦物培養基中,以2000 ppmv之正十六烷為碳源,R. erythropolis NTU-1形成之生物聚集體外觀。(a) MSM-1; 經過44小時培養後 (b)、(c) MSM-2和MSM-3; 分別經過44小時和68小時培養後……………………………………………………………………132 照片4.3.2-1 以高濃度之正十六烷為碳源,R. erythropolis NTU-1在培養基中所形成之生物聚集體外觀。(a) 10000 ppmv; 經過4天培養後; (b) 50000和100000 ppmv; 經過6天培養後…………………………………...…138 照片4.4.1-1 以正十六烷為碳源,R. erythropolis NTU-1在生物反應器中所形成之生物聚集體外觀………………………………………………………143 照片4.4.2-1 以正十六烷為碳源,R. erythropolis NTU-1在生物反應器中所形成之生物聚集體外觀。(a) 通氣量為2 vvm; (b) 通氣量為6 vvm………148 照片4.4.3-1 R. erythropolis NTU-1在生物反應器中所形成之生物聚集體外觀。(a) 以柴油為碳源; (b) 以原油為碳源…………………………………...155 | |
| dc.language.iso | zh-TW | |
| dc.subject | Rhodococcus erythropolis NTU-1菌株 | zh_TW |
| dc.subject | 生物復育 | zh_TW |
| dc.subject | 生物吸附 | zh_TW |
| dc.subject | 石油碳氫污染物 | zh_TW |
| dc.subject | 饋料批次生物反應器 | zh_TW |
| dc.subject | 海水處理 | zh_TW |
| dc.subject | Biosorption | en |
| dc.subject | Sea water treatment | en |
| dc.subject | Rhodococcus erythropolis NTU-1 | en |
| dc.subject | Petroleum pollutants | en |
| dc.subject | Fed-batch Bioreactor | en |
| dc.subject | Bioremediaiton | en |
| dc.title | Rhodococcus erythropolis NTU-1菌株對石油污染物之生物降解及生物吸附現象之應用 | zh_TW |
| dc.title | Biodegradation and Biosorption of Petroleum Pollutants By Rhodococcus erythropolis strain NTU-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡偉博,游佳欣,李振綱,王孟菊,張嘉修,林松池 | |
| dc.subject.keyword | 生物復育,生物吸附,石油碳氫污染物,饋料批次生物反應器,海水處理,Rhodococcus erythropolis NTU-1菌株, | zh_TW |
| dc.subject.keyword | Bioremediaiton,Biosorption,Fed-batch Bioreactor,Petroleum pollutants,Rhodococcus erythropolis NTU-1,Sea water treatment, | en |
| dc.relation.page | 198 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 9.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
