Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊平世(Ping-Shih Yang)
dc.contributor.authorPei-Ling Tianen
dc.contributor.author田佩玲zh_TW
dc.date.accessioned2021-06-13T03:16:30Z-
dc.date.available2008-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citation川合禎次。1985。日本產水生昆蟲檢索圖說。日本東海大學出版會,東京。409頁。
川合禎次、谷田一三。2005。日本產水生昆蟲。東海大學出版會,神奈川。1342頁。
丘明智。2004。武陵地區溪流之水棲昆蟲群聚結構及水質監測。國立中興大學昆蟲所碩士論文。95 頁。
行政院環保署。1996。淡水河底泥及生物相監測:基隆河之監測。中國生物學會。
行政院環保署。1997。 淡水河下游生物相併聚之動態稠查 PA-86-G106-09-14、淡水河污染整治對生態影響之研究 EPA-86-E3Gl-09-13、基隆河污染源與底悽生物採樣分析調查 EPA-86-G103-03-20 聯合期末報告。中央研究院動物研究所。
行政院環保署。1998a。淡水河污染整治對生物相群聚動態影響之研究EPA-87-G106-03-05。行政院環保署。
行政院環保署。1998b。烏溪污染整治對生物相群聚動態影響之研究。環保署監資處。
行政院環保署。1999。東港溪生物相監測及污染整治對生物相群聚動態影響之研究。環保署監資處。
行政院環保署。2000。河川環境水體底泥整體調查監測計畫。環保署監資處。
朱達仁。2006。溪流複合式指標評估模式之建構。特有生物研究 8(1): 35-56。
牟善傑、許再文、陳建志。1998。溪頭蕨類植物解說手冊 (彩色圖鑑) 教育推廣書刊第 19 號,台大實驗林管理處與台灣省特有生物研究保育中心共同出版,南投。151 頁。
李昌威。1998。南勢溪流域積翅目之分類。國立臺灣大學植物病蟲害學研究所碩士論文。81 頁。
吳惠如。1997。台灣產葦枝石蛾科和鱗石蛾科之分類研究 (毛翅目:直鬚亞目)。國立臺灣大學植物病蟲害學研究所碩士論文。127 頁。
何鎮平。1977。台大實驗林溪頭人工森林土壤性質之分析。國立台灣大學森林研究所碩士論文。
何鎧光、徐世傑。1977。台北區新店溪水生昆蟲之研究。省立博物館科學年刊。12: 1-50。
松木和雄。1978。台灣產春蜓科稚蟲分類之研究。國立臺灣大學植物病蟲害學研究所碩士論文。96 頁。
周心儀。2004。水生昆蟲在不同流速與底床之分布與行為作為生態工程設計之依據。國立臺灣大學生物環境系統工程學研究所碩士論文。82 頁。
周正明、黃世孟。2003。生態工法評估程序建立-溪流狀況指數為例。中華水土保持學報 34(1): 25-39。
林建村。1994。溪頭營林區蝶相及其棲地之研究。台大森林學研究所碩士論文。94 頁。
林斯正。1999。台灣產蜻蜓科 (蜻蛉目) 幼蟲分類研究。私立東海大學生物學研究所碩士論文。110 頁。
林曜松、周蓮香。1992。溪頭森林遊樂區脊椎動物相調查。中華林學季刊 25(3): 15-35。
津田松苗。1956。Saprobien system 表。淡水生物 4: 1-9。
津田松苗。1974。污水生物學。日本北隆館,東京。268 頁。
范姜俊承。2005。蘭嶼紅頭溪水生及半水生昆蟲多樣性與昆蟲多樣性研究之評論。國立中興大學研究所碩士論文。41 頁。
洪正中、徐世傑。1977。新店溪及淡水河下游之污染與生物關係。臺灣環境保護 3: 82-93。
洪正中、張嵩林、楊平世。1986。以底棲生物當作本省河川污染生物指標之研究。師大生物學報 12: 59-77。
胡通哲、王筱雯、李鴻源、施上栗、蔡慧萍。2005。南勢溪河川廊道棲地改善復育之研究。國際生態工法及水利技術研討會論文集 (1): 121-134。
徐崇斌。1997。基隆河水棲昆蟲生物指標之研究。國立台灣大學植物病蟲害研究所碩士論文。70 頁。
徐歷鵬。1997。臺灣地區毛翅目昆蟲之分類研究。私立東海大學生物學研究所博士論文。370 頁。
徐崇斌、楊平世。1997。應用水棲昆蟲生物指標評估基隆河水質之研究。中華昆蟲 17(3): 152-162。
康世昌。1993。台灣的蜉蝣目 (四節蜉科除外)。國立中興大學昆蟲學研究所博士論文。246 頁。
郭紹群。1996。花蓮縣美崙溪水棲昆蟲與生物指標之研究。國立東華大學自然資源管理研究所碩士論文。61 頁。
陳信雄。1999。台大實驗林集水區經營與管理研討會。國立台灣大學農學院,台北。106頁。
陳錦生。1984。臺灣產庫蠓屬之分類 (雙翅目:蠓科)。國立台灣大學植物病蟲害為研究所博士論文。226 頁。
陳其羽、謝翠嫻、梁彥齡。1982。望天湖底棲動物種群密度與季節變動的初步研究。海洋與湖沼13:78-86。
張先正。1992。台灣的細蜉科 (蜉蝣目:細蜉總科)。國立中興大學昆蟲學研究所碩士論文。111 頁。
張瑜棻。2001。利用不同空間層次評估高屏溪中上游土地利用對水棲昆蟲群聚之影響。國立高雄師範大學研究所碩士論文。89 頁。
黃宏斌。2001。集水區流量面積比之研究。農工學報 47(3): 42-49。
黃國靖。1994。景美溪水棲昆蟲生態及生物指標研究。國立台灣大學植物病蟲害研究所博士論文。150 頁。
黃雅倫。2005。乾旱對哈盆溪大型無脊椎動物群聚組成之影響。國立臺灣大學生態學與演化生物學研究所碩士論文。56 頁。
黃耀通。1989。台灣地區蛾蚋科昆蟲 (雙翅目:長角亞目) 之分類研究。私立東海大學生物所碩士論文。60 頁。
黃耀通。2001。台灣地區蛾蚋科昆蟲 (雙翅目) 之分類研究 (白蛉亞科除外)。私立東海大學生物所博士論文。186 頁。
楊平世。1990。溪頭蝶類及觀賞性昆蟲資源。台大實驗林林業叢刊 67:163。
楊平世、劉儒淵。1988。溪頭-昆蟲之旅。台大實驗林研究報告 2(4): 123-128。
楊平世、呂修文、林建村。1993。溪頭觀蟲手冊。教育推廣書刊。第 8 號。119 頁。
楊平世、洪正中、何鎧光。1980。淡水河流域蜉蝣目稚蟲之初步研究。台大植病學刊 7: 79-78。
楊平世、黃國靖、謝森和。1990a。北勢溪之水棲昆蟲資源及生態研究I.水棲昆蟲相及其相關生態。中華昆蟲 10: 209-224。
楊平世、謝森和、黃國靖。1990b。北勢溪之水棲昆蟲資源及生態研究II.水文因子及水棲昆蟲之群聚結構。中華昆蟲 10: 249-269。
楊懿如。1994。夜訪溪頭尋蛙行 (彩色圖鑑) 教育推廣書刊第13號。台大實驗林管理處出版,南投。81 頁。
廖啟男。2001。九二一集集大地震後台大實驗林之北勢溪集水區水質變化。國立台灣大學農業工程學研究所碩士論文。130 頁。
潘俊逸。2003。旗山溪水棲昆蟲生態及生物指標研究。國立高雄師範大學生物科學研究所碩士論文。113 頁。
鄭富書、陳福勝、吳文隆、周坤賢。2003。溪頭森林遊樂區三號坑土石流災害整治案例探討,第十屆大地工程研討會,三峽鎮。855-858 頁。
鄭富書、林銘郎、劉格非、黃宏斌、劉啟川。2001。土石流災害調查。台大實驗林管理處九十年度解說服務志工訓練手冊。4-1 ~ 4-23 頁。
鄭富書、林銘郎、劉格非、黃宏斌、劉啟川。2001。溪頭土石流災害調查。溪頭桃芝影響及復建研討會論文集,1-22,溪頭,台灣大學。
劉儒淵。1999。溪頭地區生物資源的研究概況、干擾及經營策略。1999 年生物多樣性研討會論文集 96-118。
劉棠瑞、柳重勝。1975。台灣天然林之植群生態研究 (一) 國立台灣大學溪頭之森林植群。台灣省立博物館科學年刊 18: 1-56。
顏聖紘。1997。水螟亞科與凹翅螟亞科 (鱗翅目:螟蛾科) 主要支系之系統發育分析以及臺灣產種類之分類檢討。國立中山大學生命科學研究所碩士論文,486 頁。
蘇坤芳 1992。溪頭賞鳥手冊 (彩色圖鑑) 教育推廣書刊第4號。台大實驗林管理管理處出版,南投。127 頁。
Alarie, Y., L. J. Wang, A.N. Nilsson, and P. J. Spangler. 1997. Larval morphology of four genera of the tribe Hyphydrini Sharp (Coleoptera: Dytiscidae: Hydroporinae) with an analysis of their phylogenetic relationships. Ann. Entomol. Soc. Am. 90(6): 709-735.
Allan, J. D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London. 388 pp.
Anderson, N. H., and K. W. Cummins. 1979. Influences of diet on the life histories of aquatic insects. J. Fish. Res. Bd. Can. 36: 335-342.
Angradi, T. R. 1996. Inter-habitat variation in benthic community structure, function, and organic matter storage in 3 Appalachian headwater streams. J. N. Am. Benthol. Soc. 15(1): 42-63.
Arthur, V. B., and P. P. Brussock. 1991. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia. 220(2): 99-108.
Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White, and M. L. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. North Am. Benthol. Soc. 15: 185-211.
Bergen, S. D., S. M. Bolton, and J. L. Fridley. 2001. Design principles for ecology engineering. Eco. Eng. 18: 201-210.
Cairns, Jr. J, and K. L. Dickson. 1971. A simple method for the biological assessment of the effects of waste discharges on aquatic bottom-dwelling organisms. J. Wat. Pollut. Contr. Fed. 43: 755-772.
Cao, Y., A. W. Bark, and W. P. Williams. 1997. Analysing benthic macroinvertebrate community changes along a pollution gradient: a framework for the development of biotic indices. Wat. Res. 31: 884-892.
Chi, H., Y. B. Huang, Y. D. Dai, Y. Y. Wu, and J. W. Liu. 2003. On a biodiversity study based on papers of Taiwan’s biodiversity. Symposium on Theories and Practice of Ecosystem Management-Permanent Sampling Plot Reprint. 335-360.
Clarke, K. R., and R. M. Warwick. 1994. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Lab. Plymouth. 144 pp.
Clarke, K. R., and R. N. Gorley. 2001. PRIMER v5: User Manual/Tutorial. PRIMER-ELtd. Plymouth. 91 pp.
Clements, W. H., and P. M. Kiffney. 1995. The influence of elevation on benthic community responses to heavy metals in Rocky Mountain streams. Can. J. Fish. Aquat. Sci. 52: 1966-1977.
Courtney, L. A., and W. H. Clements. 1998. Effects of acidic pH on benthic macroinvertebrate communities in stream microcosms. Hydrobiologia 379: 135-145.
Cummins, K. W. 1973. Trophic relations of aquatic insects. Annu. Rev. Entomol. 18: 183-206.
Cummins, K. W., and M. J. Klug. 1979. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 10: 141-172.
Dewey, W. L. 1986. Cannabinoid pharmacology. Pharmacol Rev. 38: 151-178.
Dudgeon, D. 1989. Seasonal dynamic of invertebrate drift in a Hong Kong stream. Zool. Lond. 22: 187-196.
Eaton, L. E., and D. R. Lenat. 1991. Comparison of a rapid bioassessment method with North Carolina’s qualitive macroinvertebrate collection method. J. North Am. Benthol. Soc. 10: 335-338.
Fritz, K. M. and W. K. Dodds. 2004. Resistance and resilience of macroinvertebrate assemblages to dying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99-112.
Graca, M. A. S., and C. N. Coimbra. 1998. The elaboration of indices to assess biological water quality. A case study. Wat. Res. 32: 380-392.
Hatcher, L. 1994. A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. NC: SAS Institute. 588 pp.
Hamilton, K., and E. P. Bergersen. 1984. Methods to estimate aquatic habitat variables. Tech. Rep. Denver, CO: Bureau of Reclamation, Division of Planning and Technical Services. 333 pp.
Hauer, F. R., and G. A. Lamberti. 1996. Methods in Stream Ecology. Academic Press, San Diego. 674pp.
Hau, H.-J., and P.-F. Lee. 2003. Influence of gradient length on community ordinations. Taiwan J. forest Sci. 18(3): 201-211. (in Chinese)
Hawkins, C. P., R. H. Norris, and J. W. Feminella. 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Eco. Appl. 10:1456-1477.
Hilsenhoff, W. L. 1977. Use of Arthropods to Evaluate Water Quality of Streams. Tech. Bull. No. 100. Dept. Natural Resources. Madison, Wisconsin. 15 pp.
Hilsenhoff, W. L. 1982. Using a Biotic Index to Evaluate Water Quality in Streams. Tech. Bull. No. 132. Dept. Natural Resources. Madison, Wisconsin. 23 pp.
Hilsenhoff, W. L. 1987. An improved biotic index of organic stream pollution. The Great Lakes Entmol. 20: 31-39.
Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. North Am. Benthol. Soc. 7: 68-68.
Hoiland, W. K., and F. W. Rabe. 1992. Effects of increasing zinc levels and habitat degradation on macroinvertebrate communities in three north Idaho streams. J. Freshwater Eco. 7: 373-380.
Hsu, C. B. 2005. Changes in Community Structures, Seriation, Cyclicity, and Diversity Patterns of Aquatic Insects under Environmental Impacts in the Upper Keelung River, Northern Taiwan. PhD Dissertation. Graduate Institute of Entomology, National Taiwan University. 237 pp.
Hsu, C. B., and P. S. Yang. 2005. Examining the relationship between aquatic insect assemblages and water variables by ordination techniques. Formosan Entomol. 25: 67-85.
Huang, Y. T., and C. S. Chen. 2001a. Redescriptions of five new record species of Psychodidae (Diptera) from Taiwan. Formosan Entomol. 21: 77-84.
Huang, Y. T., and C. S. Chen. 2001b. Five new species of Brunettia (Diptera: Psychodidae) from Taiwan. Formosan Entomol. 21: 119-132.
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577-586.
Jeng, M. L., P. S. Yang, and M. Satô. 1998. The genus Grouvellinus Chapron (Coleoptera, Elmidae) from Taiwan and Japan. Proc. Entomol. Soc. Wash. 100(3): 526-544.
Jeng, M .L., P.S. Yang and M. Satô. 2002. Notes on the morphology and systematics of the genus Pristolycus Gorham (Coleoptera: Lampyridae). Jpn. J. Syst. Entomol. 8: 87-108.
Kang, S. C., and C. T. Yang. 1994a. Heptageniidae of Taiwan (Ephemeroptera). J. Taiwan Mus. 47: 5-36.
Kang, S. C., and C. T. Yang. 1994b. Leptophlebiidae of Taiwan (Ephemeroptera). J. Taiwan Mus. 47: 57-82.

Kang, S. C., and C. T. Yang. 1994c. Caenidae of Taiwan (Ephemeroptera). Chinese J. Entomol. 14: 93-113.

Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21-27.
Kedwards, T. J., S. J. Maund, and P. F. Chapman. 1999. Community level analysis of ecotoxicological field studies: 1. biological monitoring. Env. Toxicol. Chem. 18: 149-157.
Kerans, B. L., and J. R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee valley. Ecological Applications 4: 768-785.
Kiffney, P. M. 1996. Main and interactive effects of invertebrate density, predation, and metals on a Rocky Mountain stream macroinvertebrate community. Can. J. Fish. Aquat. Sc. 53: 1595-1601.
Kleinbaum, D. G., L. L. Kupper, K. E. Muller, and A. Nizam, eds. 1998. Applied Regression Analysis and Multivarible Methods, 3rd Edition. Duxbury Press, Pacific Grove, USA. 798 pp.
Kolkwitz, R. and W. A. Marsson, 1908. Ecology of plant saprobia. Ver. Dt. Ges. 26: 505-519.
Kolkwitz, R., and W. A. Marsson, 1909. Ökologie der tierischen Saprobien. Beitäge Zür Lehre von der biologische Gewässerbeuteilung. Internationale Reveu der gesamten Hydrobiolgie 2: 126-152. (in Germany)
Kondolf, G. M. 1992. The pebble count tchnique for quantifying surface bed material size in instream flow studies. Rivers 3(2): 80-87.
Kondolf, G. M., 1997. Application of the Pebble Count: Notes on Purpose, Method, and Variants. J. Am.Wat. Res. Assoc. 33(1): 79-87.
Kovach, W. L. 1999. MVSP – A Multivariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales, UK.
Ladson, A. R., L. J. White, J. A. Doolan, B. L. Finlayson, B. T. Hart. P. S. Lake, and J. W. Tilleard. 1999. Development and testing of an index of stream condition for waterway management in Australia. Freshw. Biol. 41: 453-468.
Lee, C. F., P. S. Yang, and M. Satô. 1997. The East Asian species of the genus Macroebria Pic. (Coleoptera, Psephenidae, Eubriinae). Jpn. J. syst. Entomol. 3(2): 120-160.
Lee, C. F., P. S. Yang, and M. Satô. 1998a. Psephenidae I: Notes on the east Asian species of Ectopria LeConte. pp. 297-301. In: M. A. Jäch, and L.Ji, eds. Water beetles of China II, Natral History Museum, Vienna.
Lee, C. F., P. S. Yang, and M. Satô. 1998b. Psephenidae: II. Synopsis on Schinostethus waterhouse, with descriptions of 14 new species (Coleoptera). pp. 303-326. In: M. A. Jäch, and L.Ji, eds. Water Beetles of China II, Natral History Museum, Vienna.
Lee, C. F., M. Satô, and P. S. Yang. 1999a. Revision of Eubrianacinae (Coleoptera, Psephenidae) I. Eubrianax Kiesenwetter and Heibrianax gen. n. Jpn. J. syst. Ent. 5(1): 9-25.
Lee, C. F., M. Satô, and P. S. Yang. 1999b. A revision of Eubrianacinae (Coleoptera, Psephenidae) II. Mubrianax gen. nov. Elytra 27(2): 429-438.
Lee, C.-F., M. Satô, and P. S. Yang. 1999c. A revision of the Eubrianacinae (Coleoptera, Psephenidae) III. Jinbrianax gen.nov. Ent. Rev. Japan 54(2): 169-187.
Lee, C. F., M. Satô, and P. S. Yang. 2000a. A revision of the Eubrianacinae (Coleoptera, Psephenidae) IV. Odontanax gen. nov. Jpn. J. syst. Ent. 6(1): 151-170.
Lee, C. F., M. Satô, and P. S. Yang. 2000b. A revision of the Eubrianacinae (Coleoptera, Psephenidae) V. Jaechanax gen. nov. Elytra 28(1): 119-129.
Lee, C. F., P. S. Yang, and M. Satô. 2000c. A synopsis of Dicranopselaphus (Coleoptera: Psephenidae, Eubriinae), with descriptions of nine new species. Entomol. Sci. 3: 557-568.
Lee, C. F., P. S. Yang, and M. Satô. 2001a. Phylogeny of the genera of Eubrianacinae and descriptions of addition members of Eubrianax (Coleoptera: Psephenidae). Ann. Entomol. Soc. Am. 94(3): 347-362.
Lee, C. F., M. Satô, and P. S. Yang. 2001b. Additional notes on the Psephenidae (Coleoptera) from Asian region, I. Jpn. J. syst. Ent. 7: 77-79.
Lenat, D. R. 1984. Agriculture and stream water quality: a biological evaluation of erosion control practices. Env. Manag. 8: 333-344.
Lenat, D. R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc. 7: 222-233.
Lenat, D. R., and M. T. Barbour. 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. pp. 187-215. In: S. L. Leob, and A. Spacie, eds., Biological Monitoring of Aquatic Systems, CRC Press, Inc., Boca Raton.
Lenat, D. R. and V. H. Resh. 2001. Taxonomy and stream ecology - The benefits of genus- and species-level identifications. J. North Am. Benthol. Soc. 20: 287-298.
Liang, S. H., and B. W. Menzel. 1997. A new method to establish scoring criteria of the Index of Biotic Integrity. Zoo. Stud. 36(3): 240-250.
Liebmann, H. 1951. Handbuch der Frischwasser-und Abwasserbiotogie. R.Oldenbourg, München. 588pp. (in Germany)
Lien, J. C. 1967. New species of mosquitoes from Taiwan (Diptera: Culicidae). Part I. Two new species of Aedes (Finlaya). Trop. Med. 9(4): 177-185.
Lien, J. C. 1968a. New species of mosquitoes from Taiwan (Diptera: Culicidae). Part II. New species of Tripteroides, Orthopodomyia, Culiseta and Uranotaenia. Trop. Med. 10(1): 1-20.
Lien, J. C. 1968b. New species of mosquitoes from Taiwan (Diptera: Culicidae). Part III. Five new species of Aedes. Trop. Med. 10(2): 95-115.
Lien, J. C. 1968c. New species of mosquitoes from Taiwan (Diptera: Culicidae). Part IV. Mattinglyia catesi, n. gen., n. sp. and four new species of genus Heizmannia Ludlow. Tropical Medicine 10(3): 127-153.
Logan P., and M. P. Brooker. 1983. The macroinvertebrate faunas of riffles and pools. Wat. Res. 17: 263-270.
Ludwig, J. A., and J. F. Reynolds. 1988. Statstical Ecology. John Wiley& Sons, New York, 337 pp.
Malmqvist, B., and P. O. Hoffsten. 1999. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in Central Swedish streams. Wat. Res. 33: 2415-2423.
MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. Harper and Row, New York. 288pp.
McCafferty, W. P. 1981. Aquatic Entomology. Jones and Bartlett Publishers, Sudbury. 448pp.
McDonald, J. L., and L. C. Lu. 1972. Female Culicoides of Taiwan with descriptions of new species (Diptera: Ceratopogonidae). J. Med. Entomol. 9: 396-417.
McManus, J. 1988. Grain size determination and interpretation. pp.63-85 In: Techniques in Sedimentology, Tucker M. ed.. Blackwell: Oxford.
Merritt, R. W., and K. W. Cummins. 1984. An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall and Hunt Publ. Co., Dubuque, Iowa. 722 pp.
Merritt, R. W., and K. W. Cummins. 1996. An Introduction to the Aquatic Insect of North America. 3rd ed. Kendall and Hunt Publ. Co., Dubuque, Iowa. 862 pp.
Metcalfe, J. L. 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Env. Poll. 60: 101-139.
Murphy, M. L., C. P. Hawkins, and N. H. Anderson. 1981. Effect of canopy modification and accumulated sediment on stream communities. Trans. Am. Fish. Soc. 110: 469-478.
Novak, M. A., and R. W. Bode. 1992. Percent model affinity: a new measure of macroinvertebrate community composition. J. North Am. Benthol. Soc. 11: 80-85.
Nowell, A. R. M., and P. A. Jumars. 1984. Flow environments of aquatic benthos. Ann. Rev. Ecol. Syst. 15: 303-328.
Oksiyuk, O. P., L. N. Zimbalevskaya, A. A. Protasov, Y. V. Pligin, and A. V. Lyashenko. 1998. Estimation of the state of water bodies in Ukraine on the basis of hydrobiological parameters: parameters of benthos, periphyton, and zoophytos. Hydro. J. 34: 31-35.
Paine, G. H., and A. R. Gaufin. 1956. Aquatic Diptera as indicators of pollution in a Midwestern stream. Ohio J. Sci. 56: 291-304.
Peckarsky, B. L., and S. I. Dodson. 1980. Do stonefly predators influence benthic distributions in streams? Ecology 61(6): 1275-1282.
Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. United States Environmental Protection Agency, Washington, D.C.
Poff, N. L., and J. V. Ward. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46: 1805-1818.
Potyondy, J., and K. Bunte. 2002. Sampling with the US SAH-97 Hand-held Particle Size Analyzer. Federal interagency sedimentation project. Ms, USA. 6 pp.
Poulton, B. C., D. P. Monda, D. F. Woodward, M. L. Wildhaber, and W. G. Brumbaugh. 1995. Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana. J. Freshwat. Ecol.10: 277-293.
Poulton, B. C., M. L. Wildhaber, C. S. Charbonneau, J. F. Fairchild, B. G. Mueller, and C. J. Schmitt. 2002. A longitudinal assessment of the aquatic macroinvertebrate community in the channelized lower Missouri River. Environ. Monitoring and Assessment 85: 23-53.
Pritchard, G., L. D. Harder, and R. A. Mutch. 1996. Development of aquatic insect eggs in relation to temperature and strategies for dealing with different thermal environments. Biol. J. Linn. Soc. 58: 221-244.
Rabeni, C. F., S. P. Davies, and K. E. Gibbs. 1985. Benthic invertebrate response to pollution abatement: structural changes and functional implications. Wat. Res. Bull. 21: 489-497.
Rankin, E. T. 1989. The qualitative habitat evaluation index [QHEI] - Rationale, methods, and application. Ohio Environmental Protection Agency, Division of Water Quality Monitoring and Assessment, Surface Water Section, 54pp.
Scarbrook, M. R. 2002. Persistence and stability of lotic invertebrate communities in New Zealand. Freshw. Biol. 47: 417-431.
Scullion, J., C. A. Parish, N. Morgan, and R. W. Edwards. 1982. Comparison of benthic macroinvertebrate fauna and substratum composition in riffles and pools in the impounded River Elan and the unregulated River Wye, mid-Wales. Freshwat. Biol. 12: 579–595.
Shieh, S. H. 1998. Macroinvertebrate Community Structure, Functional Organization, Production, and Trophic Flow in a Colorado Plains Stream. Doctoral Dissertation, Colorado State University. 218pp.
Shieh, S. H., B. C. Kondratieff, J. V. Ward, and D. A. Rice. 1999. The relationship of macroinvertebrate assemblages to water chemistry in a polluted Colorado plains stream. Arch. Hydrobiol. 145: 405-421.
Shieh, S. H., and P. S. Yang. 1999a. Colonization patterns of aquatic insects on artificial substrate in a taiwan stream. Chinese J. Entomol. 19: 27-50.
Shieh, S. H., and P. S. Yang. 1999b. Colonization patterns of aquatic insects on artificial substrate: effect of substrate sizes. Chinese J. Entomol. 19: 119-143.
Shieh, S. H., and P. S. Yang. 2000. Community structure and functional organization of aquatic insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zool. Stud. 39(3): 191-202.
Sivec, I., P. S. Yang, and C. F. Lee. 1997. Name lists of insects in Taiwan -Plecoptera. Chinese J. Entomol. 17: 188-194.
Sovell, L. A., and B. Vondracek. 1999. Evaluation of the fixed count method for Rapid Bioassessment Protocol III with benthic macroinvertebrate metrics. J. North Am. Benthol. Soc. 18: 420-426.
Storey, A. W., D. H. D. Edward, and P. Gazey. 1991. Surber and kick sampling: a comparison for assessment of macroinvertebrate community structure in streams of south-western. Hydrobiologia 211: 111-121.
Stuijfzand, S. C., S. Engels, E. van Ammelrooyand, and M. Jonker. 1999. Caddisflies (Trichoptera: Hydropsychidae) used for evaluating water quality of large European rivers. Arch. Environ. Contam. Toxicol. 36: 186-192.
Suren, A. M. 1994. Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use. Freshw. Biol. 32: 323-336.
ter Braak, C. J. F. 1995. Ordination. pp: 91-173. In: C. J. F. ter Braak, O. F. R. van Tongeren, R. H. Jongman, P. van Tongeren, and C. J. ter Braak, eds., Data Analysis in Community and Landscape Ecology. Cambridge Univ. Press, Cambridge, UK.
Vannote, R. L., G. W. Minshall., and K. W. Cummings. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137.
Waite, I. R., A. T. Herlihy, D. P. Larsen, D. J. Klemm. 2000. Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. J. N. Am. Benthol. Soc. 19: 429-441.
Wallace, J. B., and R. W. Merritt. 1980. Filter-feeding ecology of aquatic insects. Annu. Rev. Entomol. 25:103-132.
Ward, J. V. 1989. The four-dimensional nature of lotic ecosystem. J. N. Am. Benthol. Soc. 8(1): 128.
Waters, T. F. 1972. The drifts of stream insects. Ann. Rev. Entomol. 17: 253-272.
Weilguni, H., and H. Humpesch. 1999. Long-term trends of physical, chemical and biological variables in the River Danube 1957-1995: a statistical approach. Aquat. Sci. 61: 234-259.
Wentworth, C. K. 1922. A scale of grade and class terms for classic sediments. J. Geol. 30: 377-392.
Wiggins, G. B. 1996. Larvae of the North American caddisfly genera. 2nd. Univ. Toronto Press, Toronto. 457 pp.
Winner, R. W., M. W. Boesel, and M. P. Farrell. 1980. Insect community structure as an index of heavy-metal pollution. Can. J. Fish. Aquat. Sci. 37: 647-655.
Yamata, K., Y. Yuzawa, S. Ogasawara and M. J. Lai. 1981. On Hepatic Collections from Chitou’s Experimental Forest of the National Taiwan University(I). J. Taiwan Meseum 34(1,2):113-115.
Yamata, K., Y. Yuzawa, S. Ogasawara, and M. J. Lai. 1986. On Hepatic Collections from Chitou’s Experimental Forest of the National Taiwan University(Ⅱ) J. Taiwan Meseum 39(1):63.
Zar, J. H. 1998. Data transformations. pp. 177-184. In: Biostatistical Analysis. 3rd ed. Prentice Hall, New Jersey.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31642-
dc.description.abstract為取得防洪工程與生態保育的平衡達到河川治理的目的,溪頭營林區已採取生態工法整治園區內土石流危害之溪流。水棲昆蟲為溪流中主要無脊椎動物成員,其分布最主要受棲地環境因子的影響,故可以藉由水棲昆蟲群聚結構之改變評估棲地環境狀況。自 2004 年 3 月至 2005 年 8 月,在溪頭北勢溪設置七個採樣站,其中第 4 至 7 樣站以蘇伯氏定面積水網 (Surber net) 對淺瀨型之棲地 (riffle habitat) 進行定量採樣,而第 1 至 3 樣站由於缺乏淺瀨型之棲地,故以鑷子或手網進行30分鐘之定性採樣;唯第3站在2004年9月後由於流量增加,改以定面積水網採樣。各樣站計算水棲昆蟲之分類群豐度 (taxa richness)、密度 (density)、歧異度 (Shannon diversity index) 、均勻度 (Pielou’s evenness) 及優勢種比例 (dominant taxon ratio) 等群聚參數,以瞭解群聚之變動;並應用多維空間尺度 (multi-dimensional scaling, MDS) 及典型對應分析 (canonical correspondence analysis, CCA)之多變質排序技術 (ordination techniques),以分析群聚結構在時間及空間上的變異,及與環境因子間之關係。同時利用理化指標之河川污染程度指標 (river pollution index, RPI) 及生物指標之 Hilsenhoff 科級生物指標 (family-level biotic index, FBI)、EPT index 評估水質之變化。各樣站並同時調查環境因子的變動 (水溫、溶氧量、電導度、酸鹼值、濁度、氨氮、硬度、總鹼度、溪流量、遮蔽度、懸浮固體值、硝酸鹽、磷酸鹽、生化需氧量及底質粒徑)。
  定量樣站部分,由單向變方分析 (one-way ANOVA) 之結果顯示,水棲昆蟲各單變質群聚參數在各樣站間僅以密度及優勢種比例呈顯著差異;就整個研究區域而言,以四節蜉科 (Baetidae) 之 Baetis spp. 為優勢分類群 (佔27.74 %),在科級亦是以四節蝣科為優勢之分類群 (佔43.25 %);各項環境因子中僅有酸鹼度、流量及遮蔽度在樣站間呈顯著差異;水棲昆蟲之功能攝食群 (functional feeding groups) 組成比例在各樣站皆以聚集採食者 (gathering collectors) 為優勢群,碎食者 (shredders) 群豐度最低,樣站間以刮食者 (scrapers) 有顯著差異,在月份間各攝食群則皆呈現顯著差異;FBI及 EPT index在樣站間無顯著差異,FBI 水質等級 (water quality) 介於 「Excellent」與「Good」之間;群聚參數與環境因子相關性中,種類數及歧異度之變化皆與硝酸鹽呈顯著之負相關,且分類群豐度與水溫亦呈顯著之負相關。以 MDS 分析群聚結構之相似性,顯示因蚋科 (Simuliidae) 之Simulium sp. 及 Prosimulium sp.、短尾石蠅科 (Nemouridae) 之 Nemoura sp.、囊翅石蛾科 (Hydrobiosidae) 之Apsilochorema excisum 等種類多集中園區內第 3 站,因而將第 3 站與其他四樣站分離為園區內外兩群組的分布型態;CCA 排序圖亦因指石蛾科 (Philopotamidae) 之 Dolophilodes sp.、舌石蛾科 (Glossosomatidae) 之 Agapetus sp.、鱗石蛾科 (Lepidostomatidae) 之 Lepidostoma sp.、牙蟲科 (Hydrophilidae) 之 Pelthydrus sp.、糠蚊科 (Ceratopogonidae) 之 Atrichopogon sp. 及 細蚊科 (Dixidae) 等種類僅出現於第 3 站而反應相同趨勢;而單變值分析則無法顯示園區內外樣站間群聚的差異性。進一步以相似性矩陣的變方分析 (analysis of similarity, ANOSIM) 檢視各樣站間之群聚結構,由 ANOSIM 的分析結果為各樣站間的群聚結構呈顯著差異,此結果在單變質參數中無法得知;而配對檢測季節群聚結構差異,顯示春季與夏秋冬三季間呈顯著差異。以多變質方法分析影響樣站間水棲昆蟲群聚分布的主要環境因子,MDS 顯示以硝酸鹽及海拔高度二環境參數組合之排序圖與水棲昆蟲群聚排序圖具最高之相似性 (ρw = 0.450),且硝酸鹽為各樣站共同具影響力之環境因子。而以 CCA 分析環境變數對物種變異值的影響,顯示第一軸萃取之物種的變異量為最大值,物種主要分布於第一軸,並指出影響物種分布之主要環境因子於第一軸為海拔高度、底質粒徑、水溫、遮蔽度為,第二軸為總鹼度、硝酸鹽,累積解釋的變異量約為 37.6 %;季節的變化在園區外較明顯,尤其夏季更為明顯。
  半定量樣站部分,分類群豐度在樣站間無顯著差異;而以 MDS 分析有/無類型資料 (presence / absence data, P / A data),顯示第 1、2 及 3 站在空間排序圖上之位置有明顯分群,以第 1、2 站間群聚相似度最為接近 (72.09 %);以水溫及電導度與水棲昆蟲種類有無構成之排序圖具最高之相似性 (ρw = 0.202)。
  全樣區部份,種類數在樣站間呈顯著差異;並以 MDS 分析有/無類型資料得知園區內第 1 及 2 站為一群,第 3 站半定量樣本混雜於第 1 站類群中,園區外第 4、5、6 及 7 站樣本及第 3 站定量樣本為另一群,顯示為暫時水域與永久水域之物種組成差異,或為定量與半定量採獲物種之差異;海拔高度之排序圖與水棲昆蟲有/無類型資料之群聚排序圖具最高相似性 (ρw = 0.679)。
關鍵字:水棲昆蟲、群聚結構、功能組成、生物指標、河川污染指標、多維空間尺度、典型對應分析、生態工法
zh_TW
dc.description.abstractIn order to strike a balance between flood control engineering and ecological conservation, ecological engineering method has been applied to manage the debris flow streams in the recreational area. Besides, aquatic insects are one of the major groups of streams invertebrates. Their distribution pattern is affected by the environmental factors in habitat, and, therefore, we can assess the changes in habitat conditions by analyzing their community structures. Seven sites were selected in the Pei-Shih Stream in Shi-Tou, and aquatic insects were sampled monthly between March 2004 and October 2005. Suber net was used in quantitative sampling in riffle habitats at sites 4-7, while dipnets and forceps with fixed-time (30 min) were used in semi-quantitative sampling at sites 1-3 where were dominated by non-lotic habitats. At site 3, the sampling method was changed from semi-quatitative to quantitative approach in September 2004 when the discharge increased and the riffle habitats were available. The community parameters, such as taxa richness, density, Shannon diversity index, Pielou’s evenness and dominant taxon ratio, were calculated to study changes in community of aquatic insects at each site. Two ordination techniques, multi-dimensional scaling (MDS) and canonical correspondence analysis (CCA), were conducted to analyze the temporal and spatial variations of the community structures. River pollution index (RPI), Hilsenhoff’s family-level biotic index (FBI) and EPT index were also used to evaluate the variation of water quality.
At quantitative sampling sites, the results of one-way ANOVA showed that significant differences were only found in density and dominant taxon ratio among sites. Baetis spp. were the dominant taxon (27.74 %), and the dominant family was Baetidae (43.25 %). Among the environmental factors, only pH, discharge and canopy showed significant difference among sites. Gathering collectors were the dominant group in the functional composition, and shredders were the least dominant. There were significant differences in the abundances of scrapers among sites. Functional groups showed significant difference among months. There was no significant difference in FBI or EPT index, and the water quality was between “excellent” and “good” based on the FBI index. Taxa richness and the diversity of aquatic insects showed significantly negative correlations with ammonia. The negative correlation was also found between the taxa richness and water temperature. The MDS plot indicated that site 3 was separated from the other 4 sites, because Simulium sp., Prosimulium sp., Nemoura sp. and Apsilochorema excisum were observed to be dominant at this site. The CCA ordination diagram revealed the same trend that Dolophilodes sp., Agapetus sp., Lepidostoma sp., Pelthydrus sp., Atrichopogon sp. and Dixidae sp. only appeared at site 3. However, univariate analysis could not show the difference in aquatic insect assemblages between sampling sites inside and outside the recreational area. Analysis of similarity (ANOSIM procedure) was further conducted to compare the community structures among sampling sites. The results revealed that the community structures among sites were significantly different. Pair-wise comparisons indicated that the community structures were significantly different between each pairs of spring and the other 3 seasons. Multivariate methods were used to analyze the main factors that shaped community structures of aquatic insects at each site. The MDS diagram based on the combination of ammonia and altitude showed the highest correlation with the ordination diagram of community structures of aquatic insects (ρw = 0.450). Besides, ammonia was the common influential factor at all sites. In the CCA diagram, the first axis constrained the maximum value on the variation of taxa and the data indicated that the major environmental factors affecting the distribution of taxa were altitude, particle size, water temperature and canopy. The second axis represented the sum of alkalinity and ammonium, and explained about 37.6 % of the cumulative variation. Seasonal changes were much apparent outside the recreational area, especially in summer.
At semi-quantitative sampling sites, there was no significant difference in taxa richness among sites. The presence/absence data (P / A data) revealed that sites 1, 2 and 3 could be separated on the ordination diagram. The similarity of community structures was the highest between sites 1 and 2 (72.09 %). Water temperature and conductivity explained most of the P/A similarity (ρw = 0.202).
All sampling sites were included in analyses using p / a data. Taxa richness was significantly different among sites. In cluster analysis, samples at sites 1 and 2, which located inside the recreational area, formed a cluster, while samples collected with dipnet at site 3 also merged into the cluster. Samples collected with Suber net at sites outside the recreational area could be clustered into another group. The difference in the assemblages could be attributed to the hydrology (permanent and temporary waters) or sampling methods. The MDS diagram based on altitude showed the highest similarity with the diagram of aquatic insect assemblages based on p/a data (ρw = 0.679).
Key words:aquatic insects, community structure, functional composition, biotic index, river pollution index, multidimensional scaling, canonical correspondence analysis, ecological engineering
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:16:30Z (GMT). No. of bitstreams: 1
ntu-95-R92632012-1.pdf: 2589768 bytes, checksum: df2d612cc12a585587eada51295b41f1 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要
英文摘要
目次
前言……………………………………………………………………1
往昔研究………………………………………………………………4
一、水棲昆蟲的分布模式……………………………………………4
二、水棲昆蟲在環境監測上之應用…………………………………8
三、臺灣水棲昆蟲分類現況…………………………………………16
四、往昔昆蟲群聚研究分析方法……………………………………16
五、溪頭往昔研究……………………………………………………18
材料與方法……………………………………………………………21
一、試驗地簡介………………………………………………………21
二、採樣站……………………………………………………………22
三、調查方法…………………………………………………………26
四、資料分析…………………………………………………………30
結果……………………………………………………………………36
Ⅰ.半定量棲地……………………………………………………….36
一、環境因子…………………………………………………………36
二、水棲昆蟲群聚結構及功能攝食群………………………………37
三、水棲昆蟲群聚分布與環境因子之關係…………………………39
四、水質狀況…………………………………………………………39
Ⅱ.定量採集急瀨棲地……………………………………………….40
一、環境因子…………………………………………………………40
二、水棲昆蟲群聚結構………………………………………………44
三、水棲昆蟲功能攝食群組成………………………………………51
四、水棲昆蟲群聚分布與環境因子之關係…………………………52
五、水質狀況…………………………………………………………55
Ⅲ.全樣區…………………………………………………………….59
一、水棲昆蟲群聚結構………………………………………………59
二、水棲昆蟲功能攝食群組成………………………………………60
三、水棲昆蟲群聚分布與環境因子之關係…………………………60
四、關鍵物種.……………………………………………………….60
五、水質狀況.……………………………………………………….61
討論……………………………………………………………………62
Ⅰ.半定量採集棲地………………………………………………….62
Ⅱ.定量採集棲地…………………………………………………….63
Ⅲ.全樣區…………………………………………………………….74
Ⅳ.分類層級及資料轉換…………………………………………….76
結論……………………………………………………………………78
引用文獻………………………………………………………………83
誌謝……………………………………………………………………101
表………………………………………………………………………103
附錄……………………………………………………………………131
圖………………………………………………………………………133
樣站照片………………………………………………………………160
dc.language.isozh-TW
dc.title溪頭地區北勢溪水棲昆蟲群聚結構及功能組成zh_TW
dc.titleCommunity Structures and Functional Compositions of the Aquatic Insects in Pei-Shih Stream, Shi-Touen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor謝森和(Sen-Her Shieh)
dc.contributor.oralexamcommittee何鎧光,王亞男(Ya-Nan Wang),黃國靖
dc.subject.keyword水棲昆蟲,群聚結構,功能組成,生物指標,河川污染指標,多維空間尺度,典型對應分析,生態工法,zh_TW
dc.subject.keywordaquatic insects,community structure,functional composition,biotic index,river pollution index,multidimensional scaling,canonical correspondence analysis,ecological engineering,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved