請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | |
| dc.contributor.author | Yi-Cheng Lin | en |
| dc.contributor.author | 林怡成 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:16:29Z | - |
| dc.date.available | 2014-08-04 | |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | 1 Singh, N. A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18, 25-29 (1998).
2 MacDonald, P. E. et al. Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15, 1423-1435 (2001). 3 Jentsch, T. J. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci 1, 21-30 (2000). 4 Davis, J. T. G-quartets 40 years later: From 5 '-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Edit 43, 668-698 (2004). 5 Huang, C. C. & Chang, H. T. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun, 1461-1463, doi:Doi 10.1039/B718752a (2008). 6 Forster, T. Energiewanderung Und Fluoreszenz. Naturwissenschaften 33, 166-175 (1946). 7 Ueyama, H., Takagi, M. & Takenaka, S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J Am Chem Soc 124, 14286-14287, doi:Doi 10.1021/Ja026892f (2002). 8 Wang, L. H., Liu, X. F., Hu, X. F., Song, S. P. & Fan, C. H. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun, 3780-3782, doi:Doi 10.1039/B607448k (2006). 9 Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. Ieee T Bio-Med Eng Bm17, 70-& (1970). 10 Bergveld, P. Development, Operation, and Application of Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. Ieee T Bio-Med Eng Bm19, 342-& (1972). 11 Moss, S. D., Janata, J. & Johnson, C. C. Potassium Ion-Sensitive Field-Effect Transistor. Anal Chem 47, 2238-2243 (1975). 12 Heng, L. Y. & Hall, E. A. H. Producing 'self-plasticizing' ion-selective membranes. Anal Chem 72, 42-51 (2000). 13 Abramova, N. et al. Application of an ion-selective field effect transistor with a photocured polymer membrane in nephrology for determination of potassium ions in dialysis solutions and in blood plasma. Talanta 52, 533-538 (2000). 14 Elbhiri, Z., Chovelon, J. M., Jaffrezic-Renault, N. & Chevalier, Y. Chemically grafted field effect transistors for the detection of potassium ions. Sensor Actuat B-Chem 58, 491-496 (1999). 15 Wakida, S. et al. Additive-salt effect on low detection limit and slope sensitivity in response of potassium- and sodium-selective neutral carrier based electrodes and their liquid-membrane based ion-sensitive field-effect transistor. Anal Sci 15, 47-51 (1999). 16 Abramova, N. & Bratov, A. Photocurable Polymers for Ion Selective Field Effect Transistors. 20 Years of Applications. Sensors-Basel 9, 7097-7110, doi:Doi 10.3390/S90907097 (2009). 17 Yun, S. Y. et al. Potentiometric properties of ion-selective electrode membranes based on segmented polyether urethane matrices. Anal Chem 69, 868-873 (1997). 18 Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289-1292 (2001). 19 Grieshaber, D., MacKenzie, R., Voros, J. & Reimhult, E. Electrochemical biosensors - Sensor principles and architectures. Sensors-Basel 8, 1400-1458 (2008). 20 Elfstrom, N. et al. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett 7, 2608-2612, doi:Doi 10.1021/Nl0709017 (2007). 21 Chen, K. I., Li, B. R. & Chen, Y. T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131-154, doi:DOI 10.1016/j.nantod.2011.02.001 (2011). 22 Bang, I. Examination or the guanyle acid. Biochem Z 26, 293-311 (1910). 23 Gellert, M., Lipsett, M. N. & Davies, D. R. Helix Formation by Guanylic Acid. P Natl Acad Sci USA 48, 2013-& (1962). 24 Simonsson, T. G-quadruplex DNA structures - Variations on a theme. Biol Chem 382, 621-628 (2001). 25 Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I. & Blackburn, E. H. Telomeric DNA Oligonucleotides Form Novel Intramolecular Structures Containing Guanine Guanine Base-Pairs. Cell 51, 899-908 (1987). 26 Keniry, M. A., Strahan, G. D., Owen, E. A. & Shafer, R. H. Solution Structure of the Na+ Form of the Dimeric Guanine Quadruplex [D(G(3)T(4)G(3))](2). Eur J Biochem 233, 631-643 (1995). 27 Sen, D. & Gilbert, W. Formation of Parallel 4-Stranded Complexes by Guanine-Rich Motifs in DNA and Its Implications for Meiosis. Nature 334, 364-366 (1988). 28 Sheu, J. T., Chen, C. C., Chang, K. S. & Li, Y. K. A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors. Biosens Bioelectron 23, 1883-1886, doi:DOI 10.1016/j.bios.2008.02.024 (2008). 29 Vanhal, R. E. G., Eijkel, J. C. T. & Bergveld, P. A Novel Description of Isfet Sensitivity with the Buffer Capacity and Double-Layer Capacitance as Key Parameters. Sensor Actuat B-Chem 24, 201-205 (1995). 30 Mandelkern, M., Elias, J. G., Eden, D. & Crothers, D. M. The Dimensions of DNA in Solution. J Mol Biol 152, 153-161 (1981). 31 Williamson, J. R. G-Quartet Structures in Telomeric DNA. Annu Rev Bioph Biom 23, 703-730 (1994). 32 Ross, W. S. & Hardin, C. C. Ion-Induced Stabilization of the G-DNA Quadruplex - Free-Energy Perturbation Studies. J Am Chem Soc 116, 6070-6080 (1994). 33 Hud, N. V., Smith, F. W., Anet, F. A. L. & Feigon, J. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by H-1 NMR. Biochemistry-Us 35, 15383-15390 (1996). 34 Gu, J. D. & Leszczynski, J. Origin of Na+/K+ selectivity of the guanine tetraplexes in water: The theoretical rationale. J Phys Chem A 106, 529-532, doi:Doi 10.1021/Jp012739g (2002). 35 Marras, S. A. E., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30, -, doi:Artn E122 (2002). 36 Baldrich, E., Restrepo, A. & O'Sullivan, C. K. Aptasensor development: Elucidation of critical parameters for optimal aptamer performance. Anal Chem 76, 7053-7063, doi:Doi 10.1021/Ac049258o (2004). 37 Bunimovich, Y. L. et al. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128, 16323-16331, doi:Doi 10.1021/Ja065923u (2006). 38 Sala, F., Nistri, A. & Criado, M. Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol 192, 203-212, doi:DOI 10.1111/j.1748-1716.2007.01804.x (2008). 39 Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol 47, 699-729, doi:DOI 10.1146/annurev.pharmtox.47.120505.105214 (2007). 40 Barrantes, G. E., Murphy, C. T., Westwick, J. & Wonnacott, S. Nicotine Increases Intracellular Calcium in Rat Hippocampal-Neurons Via Voltage-Gated Calcium Channels. Neurosci Lett 196, 101-104 (1995). 41 Xiao, Y. X. et al. Rat alpha 3/beta 4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: Pharmacology of ligand binding and function. Mol Pharmacol 54, 322-333 (1998). 42 Nooney, J. M., Peters, J. A. & Lambert, J. J. A Patch Clamp Study of the Nicotinic Acetylcholine-Receptor of Bovine Adrenomedullary Chromaffin Cells in Culture. J Physiol-London 455, 503-527 (1992). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31641 | - |
| dc.description.abstract | 隨著奈米技術蓬勃發展,矽奈米線場效應電晶體因為具有微量化、高靈敏性、即時回應等優點而受到重視,將矽奈米線場效應電晶體結合特殊生物感測分子形成的生化感測器,對於生化領域也能夠有更深一步的研究。
金屬離子在生理分析中是個很重要的議題,尤其是鉀離子,其在生物系統裡一直扮演著重要的角色,像是神經傳導、或者是血壓的調控等。本篇論文成功的結合矽奈米線場效應電晶體以及富含鳥嘌呤核酸適體,建立一套鉀離子偵測的平台,同時亦透過螢光影像、或電性量測來驗證核酸適體修飾是否成功。當核酸適體與鉀離子作用時,會形成一鳥嘌呤四鏈體結構和小段的雙股脫氧核醣核酸片段,此時矽奈米線場效應電晶體表面電位的變化,造成相對電流值之改變,此電流變化程度即顯示核酸適體與鉀離子間的作用關係。本研究中,實驗結果顯示此偵測系統對於鹼金屬離子的親和力為: (K+ > Rb+ > Na+ > Cs+ > Li+) ,而對鉀離子的偵測下限可以達到10-6 M。此外我們也經由Langmuir adsorption Isotherm計算出此核酸適體與鉀離子的結合常數Ka = (1.0 ± 0.2) × 105 M-1。 我們亦利用此奈米元件,針對腎上腺髓質細胞上受乙醯膽鹼受體調控的離子通道,作一系列的研究探討。當尼古丁刺激該細胞膜上乙醯膽鹼受體調控的離子通道而釋放出鉀離子時,修飾於場效應電晶體表面的核酸適體便能與其作用,而導致元件電流值上升。此外,利用六甲溴銨來調控乙醯膽鹼受體調控的離子通道活性的實驗中發現。當六甲溴銨 (4 mM) 抑制乙醯膽鹼受體調控的離子通道時,腎上腺髓質細胞所釋放的鉀離子濃度只剩原來未抑制的 80%。同時我們也將其應用在血清環境下鉀離子的偵測,在含高鈉鹽 (1.35~1.45 mM) 環境下,我們成功的偵測出鉀離子濃度的變化,其線性操作區間為50 μM~1 mM。 | zh_TW |
| dc.description.abstract | Nanotechnology has been developed vigorously over the past few years. In particular, silicon nanowire field effect transistor (SiNW-FET) has been noticed due to its advantages of size minimization, ultra-sensitivity, and real time response. In this study, a high sensitive SiNW-FET has been integrated with G-rich aptamers for metal ions detection.
The detection of metal ions is an important issue for physiological diagnosis, especially K+ analysis. K+ plays an important role in several biological systems, like nerve transmission and the regulation of blood pressure. Here, a K+ detection platform has been successfully demonstrated by a G-rich aptamer modified on the SiNW-FET. the efficiency of G-rich aptamer immobilization has been also demonstrated by fluorescence image and electrical measurement. The conformation of G-rich aptamer changes from random-coil to G-quadruplex and short double-helix stems when binding with K+. The stability of aptamer/metal ion complex was weasured in the following orders K+ > Rb+ > Na+ > Cs+ > Li+, and the association constant of aptamer/K+ was determined to be 105 M-1 in 1 mM Tris buffer at pH 7.4. The detection limit for K+ approached to micromolar level. Furthermore, in order to study the K+ fluxion of nicotine type acetylcholine receptor (nAChR) in neuron cells, chromaffin cells were firstly seeded on the glass and then to place on a G-rich aptamer modified SiNW-FET. Here, nicotine was used as an agonist to activate nAChR. The interaction of nAChR and nicotine controls the net flow of positively-charged ions. The measured conductance change is proportional to the concentration of nicotine added. On the other hand, hexamethonium bromide was used to block the activity of nAChR. The conductance change of treatment with or without hexamethonium bromide, shows a 20 % difference, indicating that K+ efflux could be reduced by hexamethonium bromide. We also detected the K+ flux in serum. Under high Na+ concentration (1.35~1.45 mM) , we successfully detected the different K+ concentration in the linear range of 50 μM ~1 mM. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:16:29Z (GMT). No. of bitstreams: 1 ntu-100-R98524050-1.pdf: 2704032 bytes, checksum: 54fe0256c511204fe255dfe75ca8f21a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………ii 中文摘要………………………………………………………………………………iii 英文摘要………………………………………………………………………………iv 目錄………………………………….……………….........................................vi 圖表目錄………………………………………………………………………………viii 第一章 序論………………………………………………………………………...1 1-1 前言………………………………………………………………………1 1-2 離子偵測…………………………………………………………………2 1-2.1 螢光光譜儀……………………………………………………...2 1-2.2 離子選擇場效應電晶體………………………………………...6 1-3 矽奈米線場效應電晶體…………………………………………………8 1-4 鳥嘌呤四鏈體結構…………………………..……….………………...11 1-5 實驗目的………………………………………………………………..13 第二章 實驗方法………………………………………………………………….14 2-1 實驗裝置及藥品………………………………………………………..14 2-2 實驗系統………………………………………………………………..22 2-3 實驗方法………………………………………………………………..24 2-3.1 表面修飾……………………………………………………….24 2-3.2 表面修飾證明………………………………………………….26 2-3.3 電性量測……………………………………………………….28 第三章 結果與討論……………………………………………………………….30 3-1 鉀離子及其他離子偵測………………………………………………..30 3-2 結合常數之探討………………………………………………………..37 3-3 血清及細胞離子濃度量測……………………………………………..43 3-3.1 血清鉀離子濃度量測………………………………………….43 3-3.2 細胞鉀離子濃度量測………………………………………….45 第四章 結論與討論……………………………………………………………….50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鳥嘌呤核酸適體 | zh_TW |
| dc.subject | 矽奈米線場效應電晶體 | zh_TW |
| dc.subject | 鉀離子 | zh_TW |
| dc.subject | G-rich aptamer | en |
| dc.subject | SiNW-FET | en |
| dc.subject | potassium ions | en |
| dc.title | 以富含鳥嘌呤核酸適體之矽奈米線場效應電晶體為基礎之鉀離子感應器 | zh_TW |
| dc.title | The K+ Detection on a Guanine-Rich Aptamer-Based Nanowire Field Effect Transistor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳逸聰 | |
| dc.contributor.oralexamcommittee | 陳啟東 | |
| dc.subject.keyword | 矽奈米線場效應電晶體,鉀離子,鳥嘌呤核酸適體, | zh_TW |
| dc.subject.keyword | SiNW-FET,potassium ions,G-rich aptamer, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
