請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Wen-Lan Yeh | en |
| dc.contributor.author | 葉文嵐 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:15:06Z | - |
| dc.date.available | 2006-12-31 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-31 | |
| dc.identifier.citation | 參考文獻
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062,1987. [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, pp. 2486-2489, 1987. [3] H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals:Positive role of the substrate,” Appl. Phys. Lett., vol. 76, pp. 532-534, 2000. [4] M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett., vol. 77, pp. 1937-1939, 2000. [5] S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, vol. 18, pp. 162-165, 2001. [6] S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photoniccrystal microcavity,” Opt. Lett., vol. 26, pp. 1903-1905, 2001. [7] M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka,“Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol., vol. 20, pp. 873-878, 2002. [8] J. D. Joannopoulos, R. D. Meade, and J. N. Winn Photonic crystals: Molding the flow of light , princeton, New Jersey, 1995. [9] J. B. Pendry, “Negative refraction makes a perfect lens,” Phy. Rev. Lett., vol. 85, pp. 3966-3969, 2000. [10] S. E. Harris, “Electromagnetically induced transparency,” Physics Today, vol. 50(7), pp. 36-42, 1997. [11] J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “ The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys., vol. 75, pp. 1896-1899, 1994. [12] M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “ Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett., vol. 75, pp. 316-318, 1999. [13] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,”Nature, vol. 397, pp. 594-598, 1999. [14] H. Gao, M. Rosenberry, J. Wang1 and H. Batelaan, “Experimental studies of light propagation and storage in warm atomic gases,” J. Phys. B, vol. 38, pp. 1857-1866, 2005. [15] L. Li “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A, vol. 13(9), pp. 1870-1876, 1996. [16] K. M. Ho, C. T. Chan, and C.M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., vol. 65, pp. 3152-3155, 1990. [17] L. Shen, S. He and S. Xiao, “Large absolute band gaps in twodimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B, vol. 66, 165315, 2002. [18] N. Stefanou, A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B, vol. 57, pp. 12127-12331, 1998. [19] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator opticalwaveguide:a proposal and analysis,” Opt. Lett, vol. 24, pp. 711-713, 1999. [20] E. Yablonovitch, T. J. Gmitter, and K. M. Ho, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett., vol. 67, 2295, 1991. [21] S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Phys. Rev. Lett., vol. 77, pp. 3490-3492, 2000. [22] S. Noda, Susumu, Tomoda, Katsuhiro, Yamamoto, Noritsugu, and Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science, vol. 289, pp. 604-606, 2000. [23] J. D. Joannopoulos, “Photonics: Self-assembly lights up,” Nature, vol. 414, pp. 257-258, 2001. [24] Y. A. Vlasov, X. Bo, J. C. Sturm3 and D. J. Norris1, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature, vol. 414, pp. 289-293, 2001. [25] E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou and A. Alleman,“Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature, vol. 11, No. 9, pp. 1080-1089, 2003. [26] S. Guo, and S. Albin “Numerical techniques for excitation and analysis of defect modes in photonic crystals,” Opt. Exp., vol. 414, pp. 257-258, 2001. [27] S. Shi, C. Chen, and D.W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett., vol. 86, 043104, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31575 | - |
| dc.description.abstract | 在這篇論文,我們使用了平面波展開法模擬各種光子晶體波導結構的頻帶變化。
光子晶體波導中的電磁波群速跟色散變化曲線息息相關,改變波導結構將會改變導波頻寬跟導波的頻帶曲線,藉由不同的結構觀察電磁波群速變化。另外一方面在二維光子晶體的例子中,使用 tight-binding model 來近似 direct coupled resonant photonic crystal waveguide 的導波曲線,只要能求出 TB parameter,就能用簡單的公式來估計群速。 最後用平面波展開法模擬光子晶體平板波導的導波情形。 | zh_TW |
| dc.description.abstract | In the thesis, a plane-wave expansion method for alculating the band structure of the photonic crystal is presented. As we known, photonic crystal structures provide a promising tool to control of the flow electromagnetic(EM) waves in the integrated optical devices. Therefore, there is a growing interest in developing photonic crystal-based waveguide components which can guide EM waves either along a line defect (a row of missing rods) or through coupled cavities. In the latter case, which we called coupled-cavity waveguides (CCW), the EM waves were tightly confined at each defect site, and photons can propagate by hopping, due to interactions between the neighboring evanescent cavity modes. It is observed that photon lifetime increases drastically and group velocity of photons tends towards zero at the waveguiding band edges of the periodic coupled cavities. In the photonic crystal CCW, low group velocity of light can result from localized modes in the defect. An analogy between Schrodinger's equation and Maxwell's equations allows us to use tight-binding (TB) approximation which was originally developed for electronic systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:15:06Z (GMT). No. of bitstreams: 1 ntu-95-R93941036-1.pdf: 1009806 bytes, checksum: 934b9e3898e11df0c7d14c521676ed52 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
1 導論5 1.1 光子晶體簡介. . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 光子晶體的基本原理. . . . . . . . . . . . . . . . . . . . . . 7 1.3 介紹Slow light . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 本論文的貢獻. . . . . . . . . . . . . . . . . . . . . . . . . 11 2 數值分析方法介紹14 2.1 平面波展開法理論. . . . . . . . . . . . . . . . . . . . . . . 14 2.2 利用平面波展開法的模擬實例. . . . . . . . . . . . . . . . . 18 2.3 任意週期的平面波展開法. . . . . . . . . . . . . . . . . . . 21 3 降低電磁波群速29 3.1 減低群速的原理(Slow light) . . . . . . . . . . . . . . . . . 29 3.2 Tight-BindingMethod . . . . . . . . . . . . . . . . . . . 31 3.3 共振腔耦合波導結構(Coupled cavity waveguide) . . . . . 34 4 三維的光子晶體 47 4.1 三維光子晶體的原理. . . . . . . . . . . . . . . . . . . . . 47 4.2 三維光子晶體的模擬. . . . . . . . . . . . . . . . . . . . . 49 5 結論60 參考文獻61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 平面波展開法 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 慢光 | zh_TW |
| dc.subject | tight-binding method | en |
| dc.subject | plane wave expansion method | en |
| dc.subject | band structure | en |
| dc.subject | photonic crystals | en |
| dc.title | 利用平面波展開法模擬光子晶體波導之慢光效果 | zh_TW |
| dc.title | Plane-Wave Expansion Method for Calculating Slow light Effefct of Photonic Crystals Waveguide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 毛明華(Ming-Hua Mao),李柏璁(Po-Tsung Lee) | |
| dc.subject.keyword | 光子晶體,慢光,平面波展開法, | zh_TW |
| dc.subject.keyword | photonic crystals,band structure,plane wave expansion method,tight-binding method, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 986.14 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
