請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31555
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Hou-Chien Liu | en |
dc.contributor.author | 劉厚堅 | zh_TW |
dc.date.accessioned | 2021-06-13T03:14:44Z | - |
dc.date.available | 2008-08-09 | |
dc.date.copyright | 2006-08-09 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-08-01 | |
dc.identifier.citation | [1] B. D. Cullity, “Introduction to Magnetic Materials”,
Massachusetts: Addison-Wesley, (1972). [2] James F. Shackelford, “Introduction to Materials Science for Engineers”, Fourth Edition, (1996). [3] J. Betz, K. Mackay, and D. Givord, J. Magn. Magn. Mater., vol. 207, p.180, (1999). [4] P. Hansen, S. Klahn, C. Clausen, G. Mucch and K. Witter, J. Appl. Phys. vol. 69, p.3194, (1991). [5] J. Betz, K. Mackay, and D. Givord, J. Magn. Magn. Mater., vol. 207, p.180, (1999). [6] Dennis E. Speliotis, THIC Meeting at the Naval Surface Warfare Center Carderock, (2000). [7] E. Grochowski, “ HDD Technology 2003” , (2003) [8] C. D. Mee, and E. D. Daniel, “Magnetic Recording Handbook”, McGraw-Hill, New York, (1990). [9] J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren, J. Appl. Phys., vol.87, p.5398, (2000). [10] H. Nemoto, and H. SAGA, Jpn. J. Appl. Phys. vol. 38, p.1841, (1999). [11] S. Tsunashima, JOURNAL OF PHYSICS D: APPLIED PHYSICS, R87–R102, (2001). [12] M. Mansuripur, “The Physical Principles of Magneto- optical Recording ”, p.46, (1995). [13] C. Prados, E. Marinero, and A. Hernando, J. Magn. Magn. Mater., vol. 165, p.414, (1997). [14] Tadashi Kobayashi, Hisao Tsuji, Shigeru Tsunashima and Susumu Uchiyama, Jpn. J. Appl. Phys., (1981). [15] K.H.J. Buschow, and P. Hansen , “Handbook of magnetic materials” vol.6, Chapter 4. , Pilips Lab, (1991). [16] H. Nemoto, H. Saga, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. vol. 38, p.1839, (1999). [17] T. R. McGuire, and M. Hartmann, IEEE Trans. Magn., vol. 22, p.1382, (1986). [18] S.Hashimoto, and Y. Ochiai, K. Aso , IEEE Trans. Magn., vol. 23, p.233, (1987). [19] D. Rugar, C. J. Lin, and R. Geiss, IEEE Tran. Magn., vol. 23, p.2263, (1987). [20] 郭志明,國立台灣大學博士論文, p17, (1999). [21] R. J. Gambino, J. Ziegler, and J. J. Cuomo, Appl. Phys. Lett. Vol. 24, p.99, (1974). [22] R. B. van Dover et al., J. Appl. Phys. vol. 57, p.3897, (1985). [23] H. Taagi et al., J. Appl. Phys. vol. 50, p.1642 , (1979). [24] T. Egami et al., IEEE Trans. Magn., vol. 23, p.2269, (1978). [25] S-C. N. Cheng and M. H. Kryder, Paper HQ-03, Intermag Conf., Washington, DC, IEEE Trans. Magn., vol. 25 , (1989). [26] Patent Number:JP2000067425, (2000). [27] 鄭乃文,國立台灣大學碩士論文, p17,(2003). [28] D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn., vol. 36, p.10 , (2000). [29] K. J. Strnat, in Ferromagnetic Materials 1988, vol. 4, Chap. 2, pp.131, (1988). [30] F. Tanaka, S. Tanaka, and N. Imamura, Jpn. J. Appl. Phys. vol. 26, p.231, (1987). [31] H. Ito, M. Yamaguchi, and M. Naoe, J. Appl. Phys. vol. 67, p.1322, (1991). [32] S-C. N. Cheng, and M. H. Kryder, J. Appl. Phys., vol. 70, p.5526, (1991). [33] W. A. Challener, J. Appl. Phys. vol. 67, p.4441, (1990). [34] S. Chao, B. Y. Wang, and D. R. Hung, Thin Solid Films, vol. , p.266, (1995). [35] C. Prados, E. Marinero, and A. Hernando, J. Magn. Magn. Mater., vol. 165, p.414, (1997). [36] P. C. Kuo, and C. M. Kuo, J. Appl. Phys, vol, 84, p.3317, (1998). [37] J. Betz, K. Mackay, and D. Givord, J. Magn. Magn. Mater., vol. 207, p.180, (1999). [38] Y. Itooh, and T. Suzuki, IEEE Trans. Magn., vol. 35, p.6753, (1999). [39] X. Chen , Y. J. Wang, and H. W. Zhao, J. Appl. Phys., vol. 8, p.1223, (2000). [40] H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, and K. Kojima, IEEE Trans. Magn., vol. 36, p.195, (2000). [41] J. Kim, T. Shima, N. Atoda, and J. Tominaga, J. Vac. Sci. Technol., vol. 20, p.437, (2002). [42] M. Mochida, and T. Suzuki, J. Appl. Phys., vol. 91, p.8644, (2002). [43] H. Nakagawa, H. Nemoto, and Y. Hosoe, J. Appl. Phys. vol. 91, p.8016, (2002). [44] Z. Q. Zou, H. Wang, and C. Yu, J. Appl. Phys., vol. 93, p.5268, (2003). [45] U. KULLMANN, E. KOESTER, and C. DORSCH IEEE Trans. Magn., vol. 20, p.420, (1984). [46] E. M. T. Velu and D. N. Lambeth, J. Appl. Phys., vol. 69, p. 5157, (1991). [47] K. Chen H. Hegde and F. J. Cadieu Appl. Phys. Lett., vol. 61, p.1861 , (1992). [48] Y. Okumura, H. Fujimori, O. Suzuki, N. Hosoya , X. B. Yang and H. Morita IEEE Trans. Magn., vol. 30, p.4038 , (1994). [49] Y. Okumura, O. Suzuki etc. J. Magn. Magn. Mater., vol. 146, p.5, (1995). [50] Y. Liu, D. J. Sellmyer etc. IEEE Trans. Magn., vol. 31, p.2740, (1995). [51] D. J. Sellmyer, Z.S. Shan etc. Scripta Metallurgica et Materialia., vol. 33, p. 1545, (1995). [52] Y. Liu , Z.S. Shan , and D. J. Sellmyer etc. IEEE Trans. Magn., vol. 32, p.3614, (1996). [53] M. Mizukami, T. Abe etc. IEEE Trans. Magn., vol. 33, p.2977, (1997). [54] E.E. Fullerton , J. S. Jiang etc. Appl. Phys. Lett., vol. 71, p.1579, (1997). [55] C. Prados and G. C. Hadjipanayis J. Appl. Phys., vol. 83, p.6253, (1998). [56] S. Takei, A. Morisako, and M. Matsumoto J. Appl. Phys., vol. 93, p.7762, (2003). [57] J.Sayama, and T. Asahi etc. J. Phys. D: Appl. Phys., vol. 37 , l1–4, (2004) [58] J. Sayama, K.Mizutani etc, Appl. Phys. Lett. vol. 85, p.5640, (2004). [59] S. Takei , A. Morisako, and M. Matumoto J. Magn. Magn. Mater., vol. 272-276, p.1073, (2004). [60] Yongquan Guo, Wei Li, and Weichun Feng Appl. Phys. Lett., vol. 86, p.193513, (2005). [61] A. Morisako, I. Kato, S. Takei, and X. Liu, J. Magn. Magn. Mater., vol. 303, e274–276, (2006). [62] H. Nemoto, and K. Ito, IEEE Trans. Magn., vol. 4, p.432, (2000). [63] Hiroaki Nemoto and Hideki SAGA, Jpn. J. Appl. Phys., (2001). [64] Hirofumi Sukeda , Hideki Saga, IEEE Trans. Magn., vol. 37-4, (2001). [65] K. Kojima, M. Hamamoto, J. Sato, K. Watanabe, and H. Katayama, IEEE Trans. Magn., vol. 37, p.1406, (2001). [66] Han-Ping D. Shieh, Chao-cheng Lin, Chih-Huang Lai, IEEE Trans. Magn., (2001). [67] T. Kobayashi, H. Tsuji, S. Tsunashima and S. Uchiyama, Jpn. J. Appl. Phys., (1981). [68] C.C. Lin, C. H. Lai, and R. F. Jiang, J. Appl. Phys,. vol. 93, p15, (2003). [69] S. Miyanishi, K. Kojima, J. Sato, K. Takayama, H. Fuji, A. Takahashi, and K. Ohta, J. Appl. Phys., vol. 93 , (2003). [70] C. T. Lie, P. C. Kuo, C. L. Shen, J. Appl. Phys., vol. 94, p.2538, (2003). [71] Y. H. Fang, P. C. Kuo, etc. Nanotechnology, vol.17 p.2411, (2006) [72] http://nems.ntu.edu.tw/web_nems/document/general/NMC- W-8009_WEB.pdf-台大奈米機電中心 [73] K. H. J. Buschow, and P. Hansen, “Handbook of magnetic materials” vol.6, chapter 4, Pilips Lab, (1991). [74] H. Wan, A. Tsoukatos and G. C. Hadjipanayis, J. Magn. Magn. Mater., vol. 125, p.157 , (1993). [75] Y. Yuan, F. Chevrier, H. Le Gall, M. Rommeluere, and Y. Dumond, IEEE Trans. on Magn., vol. 29, p.3778, (1993). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31555 | - |
dc.description.abstract | 本實驗以直流磁控濺鍍,於自然氧化的矽晶圓(100)基板和康寧玻璃基板上分別鍍製35 nm的SmCo以及90 nm的Tb29.3Co70.7合金薄膜當做底層,再以直流磁控濺鍍分別於SmCo及Tb29.3Co70.7薄膜上分別鍍製Tb29.3Co70.7及Tb17.2Co82.8薄膜,最後以射頻磁控濺鍍在TbCo薄膜上濺鍍一層20 nm的SiNx保護層,避免TbCo合金薄膜氧化。探討不同薄膜厚度及基板溫度對於Smx Co100-x/Tb29.3Co70.7與Tb29.3Co70.7/ Tb17.2Co82.8雙層薄膜磁性質的影響。
Tb17.2Co82.8 /Tb29.3Co70.7雙層薄膜,由於Sm14.3Co85.7為水平異向性。當Sm14.3Co85.7之Hc較TbCo小,施加反向磁場時,Hc較小的一層翻轉,受coupling影響部分Hc較大的一層也一起翻轉。造成整體Hc值反而小於Hc較大的單層。另一方面,當Sm14.3Co85.7厚度為15 nm時,其垂直膜面方向磁性質為最佳,S⊥= 0.75而Mr⊥約為200 emu/cm3。 此外,Tb29.3Co70.7(RE-rich)/Tb17.2Co82.8(TM-rich)雙層薄膜, 之記錄層Tb29.3Co70.7(RE-rich)有很大的Hc⊥值(5 kOe),而讀出層Tb17.2Co82.8(TM-rich)具有高的殘留磁化量Mr⊥=220 emu/cm3。具有可應用於熱寫磁讀記錄媒體的潛力。 | zh_TW |
dc.description.abstract | DC magnetron sputtering is used to deposit 35 nm SmCo film and 90 nm Tb29.3Co70.7 on the naturally oxidized Si (100), then deposited Tb29.3Co70.7 film and Tb17.2Co82.8 film on the SmCo film and the Tb29.3Co70.7 film, respectively.. Finally, a 20 nm thickness SiNx film is deposited on the TbCo film by RF magnetron sputtering to avoid the TbCo film from oxidation. The effect of thicknesses and substrate temperatures on the magnetic properties of SmxCo100-x /Tb29.3Co70.7 and Tb29.3Co70.7/ Tb17.2Co82.8 films are investigated.
During magnetic reversal process, the magnetic moments of Sm14.3Co85.7 films with small Hc⊥ value would couple with a part of magnetic moments of Tb29.3Co70.7 film with high Hc⊥ value. Therefore, the Hc⊥ value of the Sm14.3Co85.7 /Tb29.3Co70.7 bilayer layer is smaller than that of Tb29.3Co70.7 single layer. When the thickness of Sm14.3Co85.7 is about 15 nm, the S⊥ and Mr⊥ values are about 0.75 and 200 emu/cm3, respectively. For the Tb29.3Co70.7(RE-rich)/Tb17.2Co82.8(TM-rich)bilayer films, because the recording layer of Tb29.3Co70.7(RE-rich) has large Hc⊥ value(about 5 kOe)and the readout layer of Tb17.2Co82.8 (TM-rich)has enough Mr⊥value (about 220 emu/cm3), it has potential to be applied on HAMR media. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:44Z (GMT). No. of bitstreams: 1 ntu-95-R93527002-1.pdf: 3175064 bytes, checksum: c6291a47341290a60f084a854691afc2 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iii 圖目錄 vii 表目錄 xiv 第一章、前言1 第二章、理論基礎與文獻回顧3 2-1 理論基礎3 2-1-1 磁性材料薄膜 3 2-1-2 磁記錄的挑戰 5 2-1-3 混合記錄媒體 5 2-1-4 稀土-過渡合金6 2-1-5 記錄層材料的基本要求8 2-1-6 磁異向性9 2-2 文獻回顧11 2-2-1 非晶質稀土-過渡TbCo base薄膜11 2-2-2 SmCo高磁異向性薄膜15 2-2-3 新式熱寫磁讀薄膜20 2-3 研究方向24 第三章、實驗流程與分析方法34 3-1 實驗流程圖34 3-2 靶材選取35 3-2-1 磁性層靶材35 3-2-2 保護層靶材35 3-3基板之製備與清洗35 3-3-1 基板選取與裁製35 3-3-2 基板清洗35 3-3-3 基板預熱36 3-4 實驗裝置與薄膜製備36 3-4-1 實驗裝置36 3-4-2 SmCo及TbCo薄膜濺鍍37 3-5 薄膜膜厚測定38 3-6 磁性量測38 3-6-1 VSM磁性量測38 3-6-2 SQUID 超導量子干涉儀磁性量測39 3-7 薄膜組成分析39 3-8. 薄膜微結構分析39 3-8-1 XRD 繞射分析39 3-8-2 TEM 微結構觀察40 第四章、實驗結果與討論45 4-1 TbxCo100-x合金薄膜之磁性質分析45 4-1-1 TbxCo100-x薄膜組成對室溫磁性質的影響45 4-1-2 Tb29.3Co70.7薄膜厚度對室溫磁性質的影響48 4-2 SmxCo100-x合金薄膜49 4-2-1 SmxCo100-x薄膜組成對室溫磁性質的影響49 4-2-2 Sm24.8Co75.2與Sm14.3Co85.7薄膜厚度對室溫磁 性質的影響51 4-2-3 Sm14.3Co85.7薄膜基板溫度對室溫磁性質的影響53 4-3 加入(Cu,Ag,Al)等底層對Sm 14.3Co 85.7合金薄膜之微 結構及磁性質的影響55 4-3-1 加入銅底層對Sm 14.3Co 85.7薄膜之室溫磁性質的影 響55 4-3-2 加入銀底層對Sm 14.3Co 85.7薄膜之室溫磁性質的影 響59 4-3-3 加入鋁底層對Sm 14.Co 85.73薄膜之室溫磁性質的影 響60 4-3-4 添加銅對Sm 14.3Co 85.7薄膜之室溫磁性質的影響62 4-4 Sm14.3Co85.7 / Tb29.3Co70.7與Co70.7Tb29.3 (RE-rich)/Co82.8Tb17.2(TM-rich)雙層薄膜的磁性 質63 4-4-1 Sm14.3Co85.7 / Tb29.3Co70.7薄膜室溫下的磁性質 63 4-4-2 Tb29.3Co70.7(RE-rich)/ Tb17.2Co82.8 (TM-rich)雙層薄膜室溫下的磁性質66 4-5 Tb17.2Co82.8(TM-rich)/ Tb29.3Co70.7(RE-rich)雙 層薄 膜熱磁性質分析68 第五章、結論106 參考文獻109 | |
dc.language.iso | zh-TW | |
dc.title | SmxCo100-x /Tb29.3Co70.7及Tb29.3Co70.7/ Tb17.2Co82.8雙層熱寫磁讀記錄薄膜之研製 | zh_TW |
dc.title | Preparation of SmxCo100-x / Tb29.3Co70.7 and Tb29.3Co70.7/ Tb17.2Co82.8 thermo-magnetic recording thin films | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃暉理,蔣東堯,劉黃升 | |
dc.subject.keyword | 熱寫磁讀,雙層薄膜, | zh_TW |
dc.subject.keyword | thermo-magnetic,bilayer, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。