Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31539Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | |
| dc.contributor.author | Hui-Min Wu | en |
| dc.contributor.author | 吳惠敏 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:14:28Z | - |
| dc.date.available | 2007-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-08-01 | |
| dc.identifier.citation | 1. R. R. Tummala and E. J. Rymaszewski, “Microelectronic Packaging Handbook”, Van Nostrand Reinhold , 1989
2. J. H. Lau, “ Ball Grid Array Technology”, McGraw-Hill , 1995 3. Paul A. Magill, Philip A. Deane, J. Daniel Mis, and Glenn A. Rinne, “Flip Chip Overview”, IEEE , 1996 4. Freyman, B., Marrs, R , ”Ball Grid Array (BGA): The New Standard For High I/O Surface Mount Packages”, Proceedings of 1993 Japan International, June 9-11, 1993 Page(s):41 – 45 5. Flannery, J., “Surface mount power converters”, Eighteenth Annual IEEE, Volume 2, 9-13 Feb. 2003 Page(s):812 - 816 vol.2 6. Grigson, A., ”Soldering on: the importance of surface-mount technology” IEE Review Volume 40, Issue 6, 17 Nov. 1994 Page(s):SUPL2 - SUPL4 7. Doot, R.K., “Motorola's first DCA product: the Gold Line Pen Pager”, Electronic Components and Technology Conference, 1996. Proceedings., 46th 28-31 May 1996 Page(s):535 - 539 8. Tarter, T., S., Goetz, M., P. and Papageorge, M., “BGA Performance Characteristics: a user’s design guide”, Proceedings of SMI conference, 1995, pp. 245-254. 9. Liu, J.J.; Berg, H.; Wen, Y.; Mulgaonker, S.; Bowlby, R.; Mawer, A., “Plastic bail grid array (PBGA) overview”, Materials Chemistry and Physics, v 40, n 4, May, 1995, p 236 10. Cook, Steve, ”Get the lead out”, Clean Tech, v 4, n 11, November/December, 2004, p 28-29 11. Hardy, Stephen, “EU to industry: Get the lead out”, Lightwave, v 22, n 4, April, 2005, p 1+31-33 12. B.Salam, N.N. Ekere, D. Rajkumar, “Study of the Microstructure of Sn-Ag-Cu Lead Free Solders and the Effect of Solder”, Volume on Intermetallic Layer Formation, 2001, Electronic Components and Technology Conference 13. Carol. Handwerker, “Lead-Free Solders: A Change in the Electronics infrastructure”, Circuitree, Sep.1999,pp2-8 14. Suraski, D., Seelig, K, “The current status of lead-free solder alloys.“, Electronics Packaging Manufacturing, IEEE Transactions on Volume 24, Issue 4, Oct. 2001 Page(s):244 - 248 15. Turbini, L.J., Munie, G.C., Bernier, D., Gamalski, J., Bergman, D.W., “Examining the environmental impact of lead-free soldering alternatives”, IEEE Transactions on Electronics Packaging Manufacturing, v 24, n 1, January, 2001, p 4-9 16. N. Biunno, “A Root Cause Failure Mechanism for Solder Joint Integrity of Electroless Nickle/ Immersion Gold Surface Finishes”, SMTA, Chicago,(1990) 17. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nikel/Immersion Gold”, IEEE Electron. Compon. And Technol. Conf.,(1998)952-961. 18. D. Cullen, “Immersion Silver Performance Results”, IPC Works’ 99, Minneapolis, MN, Oct.27 (1999). 19. J. M. Ferriter and S.P. Redmond, “Specialty Solder in microelectronic Assembly”, Materials Enginnering,Vol.109,No.8,1992,pp.8-9 20. C. Melton, “The Effect of Reflow Process Variables on the Wetability of Lead-Free Solders”, JOM,Vol.45,No.7,July,1993,pp.33-35 21. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au Foil”, Materials Chemistry and Physics, 53, 1998, pp.165-171 22. P. G. Kim and K. N. Tu, “Morphology of Wetting Reaction of Eutectic SnPb Solder on Au Foils”, Journal of Applied Physics, 80(7), 1 Oct., 1996, pp.3822-3827 23. D. H. Daebler, “An Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, Oct., 1991, pp.43-46 24. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au Foil”, Materials Chemistry and Physics, 53, 1998, pp.165-171 25. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, “Formation and Resettlement of (AuxSn1-x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish”, Journal of Electronic Materials, Vol. 29, No.10, 2000, pp.1175-1181 26. C. E. Ho, Y. M. Chen, and C. R. Kao, “Reaction Kinetics of Solder-Balls with Pads in BGA Packages during Reflow Soldering”, Journal of Electronic Materials, Vol.28, No.11, 1999, pp.1231-1237 27. C. E. Ho, W. T. Chen, and C. R. Kao, “Interactions Between Solder and Metallization During Long-Term Aging of Advanced Microelectronic Packages”, Journal of Electronic Materials, Vol.30, No.4, 2001, pp.379-385 28. C. E. Ho , S.Y. Tsai , C. R. Kao , “Reaction of solder with Ni/Au metallization for electronic packages during reflow soldering”, Volume 24, Issue 4, Nov. 2001 Page(s):493 – 498 29. Marks, Michael Raj, ”Effect of burn-in on shear strength of 63Sn-37Pb solder joints on an Au/Ni/Cu substrate Marks”, Journal of Electronic Materials, v 31, n 4, April, 2002, p 265-271 30. Ho, C.E., Shiau, L.C., Kao, C.R., “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1264-1269 31. Minor, A.M., Morris, J.W. Jr., “Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 31A, n 3, Mar, 2000, p 798-800 32. Minor, A.M., Morris, J.W. Jr., “Inhibiting growth of the Au0.5Ni0.5Sn4 intermetallic layer in Pb-Sn solder joints reflowed on Au/Ni metallization”, Journal of Electronic Materials, v 29, n 10, Oct, 2000, p 1170-1174 33. S. K. Kang and A. K. Sarkhel, “Lead(Pb)-Free Solders for Electronic Package”, Journal of Electronic Materials, Vol.23, No.8, 1994, pp.701-707 34. W. J. Tomlinson, I. Collier, “The Mechanical Properties and Microstructure of Copper and Brass Joint Soldered with Eutectic Tin-Bisumth Solder”, Journal of Materials Science 22 (1987) p1835 – 1839. 35. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Materials Review, Vol. 40, No.2, 1995, pp.65-93 36. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto and K. Niwa, “Solder Joint Reliability of Indium-Alloy Interconnection”, Journal of Electronic Materials, 24, 1996, pp.39-45 37. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 23, (1994), pp. 765-772 38. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbondingc”, IEEE Trans. on Comp., Pac. and Manu. Tech., 13, 4, 1990, pp.736-742 39. P. Biocca, “Global Update on Lead-Free Solders”, SMT, June, (1999), pp. 64-67 40. Gerbracht, Lisa; Cox, Malcom; Whiting, Scott, “Understanding the complexities of solder ball pull testing on BGAs”, Advanced Packaging, v 14, n 3, March, 2005, p 20-21 41. M. E. Loomans, and M. E. Fine, “Metallurgical and Materials Transactions A”, Vol. 31A, April 2000, p1155-1162. 42. L. Y. Tommi, H. Steen, and A. Forsten, “Development and Validation of a Lead-Free Alloys for Solder Paste Applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, Vol. 20, NO. 3, July 1997, p194-198. 43. D.R. Frear, J.W. Jang, J.K. Lin, C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM, v 53, n 6, June, 2001, p 28-32+38 44. T. Laine-Ylijoki, Steen, H., Forsten, A., “Development and validation of a lead-free alloy for solder paste applications”, Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on Volume 20, Issue 3, July 1997 Page(s):194 – 198 45. Harrison, M.R. , Vincent, J.H. , Steen, H.A.H., “Lead-free reflow soldering for electronics assembly”, Soldering and Surface Mount Technology, v 13, n 3, 2001, p 21-38 46. R. Mahidhara, “A Primer on Lead-Free Solder”, Chip Scale Review, March-April 2000. 47. Zhao, Jie , Wang, Xiu-Min, Wang, Lai, Qi, Lin, “Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder”, Journal of Alloys and Compounds, v 375, n 1-2, Jul 28, 2004, p 196-201 48. Korhonen, Tia-Marje, Vuorinen, Vesa, Kivilahti, Jorma K., “Interconnections based on Bi-coated SnAg solder balls”, IEEE Transactions on Advanced Packaging, v 24, n 4, November, 2001, p 515 49. Mutoh, Y. , Zhao, J., Miyashita, Y.; Kanchanomai, C., “Fatigue crack growth behaviour of lead-containing and lead-free solders”, Soldering and Surface Mount Technology, v 14, n 3, 2002, p 37-45+7+9 50. Kanchanomai, Chaosuan, Miyashita, Yukio, Mutoh, Yoshiharu, “Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders”, Journal of Electronic Materials, v 31, n 5, May, 2002, p 456-465 51. Kanchanomai, Chaosuan, “Cyclic deformation behavior of Sn-Ag-Cu-Bi solder”, Proceedings of 41st Kasetsart University Annual Conference, 2003, p 359-366 52. Huang, M. L., Wu, C. M. L., Lai, J.K.L., Chan, Y.C. “Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging”, Journal of Electronic Materials, v 29, n 8, Aug, 2000, p 1021-1026 53. Huang, M. L. ,Wang, L., “Effects of Cu, Bi, and In on microstructure and tensile properties of Sn-Ag-X(Cu, Bi, In) solders”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 36, n 6, June, 2005, p 1439-1446 54. Anderson, I. E., Cook, B.A., Harringa, J., Terpstra, R.L. “Microstructural modifications and properties of Sn-Ag-Cu solder joints induced by alloying”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1166-1174 55. Anderson, I. E., Harringa, J.L., “Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength”, Journal of Electronic Materials, v 33, n 12, December, 2004, p 1485-1496 56. Anderson, I. E., Foley, J.C., Cook, B.A., Harringa, J., Terpstra, R.L., Unal, O. “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1050-1059 57. Cook, B.A., Anderson, I.E., Harringa, J.L., Terpstra, R.L. “Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1190-1194 58. L. Liu, C. Anderson, and J. Liu, “Thermodynamic Assessment of Sn-Co Lead Free Solder System”, Journal of Electronic Materials,Vol.33,No.9,2004 59. Lee Y.C., “Studies on solder self-alignment”, Lasers and Electro-Optics Society Annual Meeting”, 1994. LEOS '94 Conference Proceedings. IEEE V1, 31 Oct.-3 Nov., 1994,p 73 – 74 60. Hannibal Ted , Singer Adam, Nguyen Luu, Tracy Dan, Giberti Dick, “Preventing popcorning: What does it cost the industry? ”, Proceedings-Electronic Components and Technology Conference, 1998, p 471-476 61. Abtew M., “Lead-free solders in microelectronics”, Materials Science and Engineering: R: Reports, v 27, n 5-6, Jun, 2000, p 95-141 62. Sattiraju, S.V. Dang, B. Johnson, R.W., Li Y., Smith J.S., Bozack M.J. , “Wetting characteristics of Pb-free solder pastes and Pb-free PWB finishes”, Proceedings - Electronic Components and Technology Conference, 2001, p 1338-1344 63. Zribi A., Chromik R.R., Presthus, R., Clum J., Zavalij L., Cotts E.J., “Effect of Au-intermetallic compounds on mechanical reliability of Sn-Pb/Au-Ni-Cu joints”, American Society of Mechanical Engineers, EEP, v 26-2, 1999, p 1573-1577 64. Blair, Howard D., Pan Tsung-Yu, Nicholson John M., Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders Source: Proceedings - Electronic Components and Technology Conference, 1998, p 259-267 65. J. H. Lee, Journal of Electronic Material, Vol.30, No.9, 2001, p409-413 66. Humpston G., Evans D. S., “CONSTITUTION OF Au-AuSn-Pb PARTIAL TERNARY SYSTEM. ”, Materials Science and Technology, v 3, n 8, Aug, 1987, p 62l-627 67. Shen, Jun; Gao, Hou-Xiu; Liu, Yong-Chang; Wei, Chen; Yang, Yu-Qin, “Effect of cooling rates on the microstructure and mechanical behavior of Sn-Ag solder ”, Gongneng Cailiao/Journal of Functional Materials, v 36, n 1, January, 2005, p 47-49 68. Ochoa, F.; Williams, J.J.; Chawla, N. , “The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5Ag solder”, JOM, v 55, n 6, June, 2003, p 56-60 69. Lee, T.Y.; Tu, K.N.; Frear, D.R. , “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, Journal of Applied Physics, v 90, n 9, Nov 1, 2001, p 4502 70. Kao, Szu-Tsung; Lin, Yung-Chi; Duh, Jenq-Gong, “Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition”, Journal of Electronic Materials, v 35, n 3, March, 2006, p 486-493 71. Arulvanan, Periannan; Zhong, Zhaowei; Shi, Xunqing,“Effects of process conditions on reliability, microstructure evolution and failure modes of SnAgCu solder joints”, Microelectronics Reliability, v 46, n 2-4, February/April, 2006, p 432-439 72. Kim, P.G.; Tu, K.N. , “Fast dissolution and soldering reactions on Au foils ”, Materials Chemistry and Physics, v 53, n 2, May, 1998, p 165-171 73. H. M. Wu, F. C. Wu, T. H. Chuang, “Intermetallic Reactions in a Sn-20In-2.8Ag Solder BGA Package with Au/Ni/Cu Pads”, J. Electron. Mat., v 34, n 11, November, 2005. 74. Zhou, Jian; Sun, Yangshan; Xue, Feng, “Properties of low melting point Sn-Zn-Bi solders”,Journal of Alloys and Compounds, v 397, n 1-2, Jul 19, 2005, p 260-264 75. Wu, C.M.L.; Huang, M.L.; Lai, J.K.L.; Chan, Y.C. , “Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying”, Journal of Electronic Materials, v 29, n 8, Aug, 2000, p 1015-1020 76. Wu, C.M. Lawrence; Huang, Mingliang L. ,“Microstructural evolution of lead-free Sn-Bi-Ag-Cu SMT joints during aging”, IEEE Transactions on Advanced Packaging, v 28, n 1, February, 2005, p 128-133 77. Kang, S.K.; Choi, W.K.; Yim, M.J.; Shih, D.Y , “.Studies of the mechanical and electrical properties of lead-free solder joints”, Journal of Electronic Materials, v 31, n 11, November, Lead-free Solders and Materials Issues In Microelectronic Packaging, 2002, p 1292-1303 78. Zhao, J.; Mutoh, Y.; Miyashita, Y.; Mannan, S.L. , “Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders”, Source: Journal of Electronic Materials, v 31, n 8, August, 2002, p 879-886 79. Lin Qi; Jie Zhao; Xiu-min Wang; Lai Wang , “The effect of Bi on the IMC growth in Sn-3Ag-0.5Cu solder interface during aging process”, Business of Electronic Product Reliability and Liability, 2004 International Conference on Apr 27-30, 2004 Page(s):42 – 46 80. Olsen, Dennis R.; Berg, Howard M. Source, “ PROPERTIES OF DIE BOND ALLOYS RELATING TO THERMAL FATIGUE. ”,IEEE Transactions on Components, Hybrids and Manufacturing Technology, v CHMT-2, n 2, June, 1979, p 257-263 81. Lee, Hwa-Teng; Chen, Ming-Hung; Jao, Huei-Mei; Hsu, Chin-Jui, “ Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints”, Journal of Electronic Materials, v 33, n 9, September, 2004, p 1048-1054 82. Unal, O.; Anderson, I.E.; Harringa, J.L.; Terpstra, R.L.; Cook, B.A.; Foley, J.C. , “Application of an asymmetrical four point bend shear test to solder joints”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1206-1213 83. Seelig, K.; Suraski, D., “The status of lead-free solder alloys”, Electronic Components and Technology Conference, 2000. 2000 Proceedings. 50th 21-24 May 2000 ,p 1405 – 1409 84. Suganuma, K.; Kim, K.S.; Huh, S.H. , “Selection of Sn-Ag-Cu lead-free alloys”, Proceedings of SPIE - The International Society for Optical Engineering, v 4587, 2001, p 529-534 85. Zeng, K.; Tu, K.N. , “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering, Reports, v 38, n 2, Jun 14, 2002, p 55 86. Mei, Z.; Morris, J.W. Jr, “Superplastic creep of low melting point solder joints”, Journal of Electronic Materials, v 21, n 4, Apr, 1992, p 401-407 87. Sharif, Ahmed; Chan, Y.C. Source, “Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization”, Thin Solid Films, v 504, n 1-2, May 10, Proceedings of The International Conference on Materials for Advanced Technologies (ICMAT 2005) Symposium, 2006, p 431-435 88. Sharif, Ahmed; Chan, Y.C. , “Interfacial reactions on electrolytic Ni and electroless Ni(P) metallization with Sn-In-Ag-Cu solder”, Journal of Alloys and Compounds, v 393, n 1-2, May 3, 2005, p 135-140 89. Coyle, Richard J.; Serafino, Anthony J.; Solan, Patrick P, “.Ball shear versus ball pull test methods for evaluating interfacial failures in area array packages”, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 2002, p 200-205 90. Kariya, Yoshiharu; Hirata, Yasunori; Otsuka, Masahisa , “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, Journal of Electronic Materials, v 28, n 11, Nov, 1999, p 1263-1269 91. Kariya, Y.; Morihata, T.; Hazawa, E.; Otsuka, M. , “Assessment of low-cycle fatigue life of Sn-3.5mass%Ag-X (X = Bi or Cu) alloy by strain range partitioning approach”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1184-1189 92. Yoon, Jeong-Won; Lee, Chang-Bae; Jung, Seung-Boo , “Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment”, Journal of Electronic Materials, v 32, n 11, November, 2003, p 1195-1202 93. Chuang, Chiang-Ming; Lin, Kwang-Lung, “Effect of Microelements Addition on the Interfacial Reaction between Sn-Ag-Cu Solders and the Cu Substrate”, Journal of Electronic Materials, v 32, n 12, December, 2003, p 1426-1431 94. Chuang Chiang-Ming, Shih Po-Cheng, Lin Kwang-Lung, 2002 Int’l Symposium on Electronic Materials and Package, p 360-365 95. Chuang, Chiang-Ming; Shih, Po-Cheng; Lin, Kwang-Lung, “Mechanical Strength of Sn-3.5Ag-Based Solders and Related Bondings”, Journal of Electronic Materials, v 33, n 1, January, 2004, p 1-6 96. Chen, Guohai; Ma, Jusheng; Geng, Zhiting, “Fabrication and properties of lead-free Sn-Ag-Cu-Ga solder alloy”, Materials Science Forum, v 475-479, n III, 2005, p 1747-1750 97. Chen, Kang-I.; Lin, Kwang-Lung, “The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys-the effect of Ga”, Journal of Electronic Materials, v 32, n 10, October, 2003, p 1111-1116 98. D. H. DaeblercAn, “ Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, Oct., 1991, pp.43-46 99. Artaki, I.; Jackson, A.M.; Vianco, P.T. Artaki, I.; Jackson, A.M.; Vianco, P.T. , “Evaluation of lead-free solder joints in electronic assemblies”, Journal of Electronic Materials, v 23, n 8, Aug, 1994, p 757-764 100. 鄭明達,Sn-Ag-Cu銲錫球格陣列構裝界面反應研究,國立臺灣大學博士論文,2003年 101. Lee, T.Y.; Choi, W.J.; Tu, K.N.; Jang, J.W.; Kuo, S.M.; Lin, J.K.; Frear, D.R.; Zeng, K.; Kivilahti, J.K. , “Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, v 17, n 2, February, 2002, p 291-301 102. Chia, Julian Yan Hon; Cotterell, Brian; Chai, Tai Chong, “The mechanics of the solder ball shear test and the effect of shear rate”, Materials Science and Engineering A, v 417, n 1-2, Feb 15, 2006, p 259-274 103. Nair, Krishna K.; Perkinson, Nat; Rinne, Glenn A. , “Solder shear strength for process control”, Proceedings - Electronic Components and Technology Conference, 2003, p 250-255 104. C. W. Huang, K. Suganuma, M. Kiso, and S. Hashimoto, J. Mater. Res.,18, 2003, p 2540 105. YoonChul Sohn; Jin Yu; Kang, S.K.; DaYuan Shih; TaekYeong Lee , “Effect of Intermetallics Spalling on the Mechanical Behavior of Electroless Ni(P)/PbFree Solder Interconnection”, Electronic Components and Technology, 2005. ECTC '05. Proceedings, 31 May-3 June 2005 Page(s):83 – 88 106. M. J. Rizvi, Y.C. Chan, C. bailey, H. Lu, M. N. Islam, “Effect of adding 1wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging”, Journal of Alloys and Compound ,407,2006, p 208-214 107. Hwang, Chi-Won; Lee, Jung-Goo; Suganuma, Katsuaki; Mori, Hirotaro , “interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating”, Journal of Electronic Materials, v 32, n 2, February, 2003, p 52-62 108. Jin-Won Choi; Tae-Sung Oh, “Shear strength and aging characteristics of Sn-Pb and Sn-Ag-Bi solder bumps”, Electronic Materials and Packaging, 2001. EMAP 2001. Advances in 19-22 Nov. 2001 Page(s):433 - 437 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31539 | - |
| dc.description.abstract | 本研究以添加不同含量的Bi元素在Sn3Ag0.5Cu銲錫內作為研究對象,除了針對銲錫本身微結構觀察之外,並與Au/Ni(P)/Cu接墊作接點界面反應與機械性質研究。
實驗結果顯示,當Bi的含量添加到3wt%時,銲錫內部可觀察到微量的純Bi析出,Bi含量達到6wt%時,觀察到Sn基地內的Bi析出量越多。而在熔點方面,Bi可以降低熔點溫度,且隨著Bi含量的添加,硬度與拉伸強度上升,但伸長率下降。 在球格陣列構裝方面,Sn3Ag0.5Cu在時效150℃時,銲錫內的AuSn4介金屬轉變成(Au,Ni)Sn4,界面介金屬成分也轉變為 (Cu,Ni,Au)6Sn5。而在添加Bi的Sn3Ag0.5Cu系列,在界面處有發現(Cu,Ni,Au)3Sn4介金屬生成。在總體界面介金屬厚度而言,與電鍍 Ni研究100相較,因在無電鍍Ni層之間有富P之Ni層與Ni3(Sn,P)薄層,為IMC/ Ni3(Sn,P)/P-rich Ni/Ni(P),而此Ni3(Sn,P)薄層可視為Ni的擴散阻礙層,故厚度較為薄。在剪力強度方面,Sn3Ag0.5Cu有時效軟化問題,添加微量Bi後剪力強度增加且時效後呈現穩定剪力強度值,但當添加達到3wt%以後,破斷面會由延性破壞轉為脆性破壞。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:28Z (GMT). No. of bitstreams: 1 ntu-95-D92527008-1.pdf: 26279300 bytes, checksum: 7323be683343def9073f9cb90aed37cb (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………… I
目錄 Ⅱ 圖目錄 V 表目錄 XⅡ 壹、研究動機 1 貳、理論與文獻回顧 5 2-1 電子構裝技術簡介 5 2-1-1 球格陣列構裝的發展 8 2-1-2球格陣列構裝的主要破壞因素 10 2-1-3無鉛銲錫的發展 12 2-1-4印刷電路板之表面處理 14 2-2鉛錫合金與常見無鉛銲錫相關文獻 17 2-2-1 Sn-Pb銲錫的金脆現象 17 2-2-2常見二元無鉛銲錫特性 19 2-2-3常見三元無鉛銲錫特性 20 2-2-4添加第四元元素之無鉛銲錫研究 22 2-2-4-1無鉛銲錫添加Bi元素之研究 22 2-2-4-2 無鉛銲錫添加In、Co、Fe、Sb、Ni、Ga之研究 25 2-2-5球格陣列構裝接點可靠度 28 參、實驗規劃及方法 39 3-1無鉛銲錫選用與配置 39 3-2基板選用 40 3-3主要使用儀器設備: 40 3-4球格陣列構裝試驗 41 3-4-1銲錫球之迴銲試驗 41 3-4-2銲錫球之高溫儲存試驗 42 肆、結果與討論 48 4-1 Sn-3Ag-0.5Cu-XBi銲錫之研究 48 4-1-1 Sn-3Ag-0.5Cu-XBi銲錫合金之熔點 48 4-1-2 Sn-3Ag-0.5Cu-XBi銲錫合金之硬度與拉伸強度 49 4-2 Sn-3Ag-0.5Cu-XBi銲錫之球格陣列構裝研究 50 4-2-1 Sn-3Ag-0.5Cu銲錫之球格陣列構裝研究 50 4-2-2 Sn-3Ag-0.5Cu-1Bi銲錫之球格陣列構裝研究 55 4-2-3 Sn-3Ag-0.5Cu-3Bi銲錫之球格陣列構裝研究 57 4-2-4 Sn-3Ag-0.5Cu-6Bi銲錫之球格陣列構裝研究 60 4-2-5 添加Bi對界面介金屬厚度影響 61 4-3 Sn-3Ag-0.5Cu-XBi之推球強度 62 4-3-1 Sn-3Ag-0.5Cu之推球強度 62 4-3-2 Sn-3Ag-0.5Cu-XBi之推球強度 63 伍、結論 112 陸、參考文獻 114 附錄、論文發表 124 圖目錄 圖2-1 電子構裝的4個層次 31 圖2-2覆晶接合之特性 31 圖2-3 Direct Chip Attach (DCA)之示意圖 32 圖2-4 銲錫球自動對位示意圖 32 圖2-5依承載基板而分類的球格陣列構裝 33 圖2.7 推球試驗示意圖 37 圖2.8 推球試驗的破壞模式分類 38 圖3-1 本實驗所使用的銲錫之DSC曲線: (a) Sn-3Ag-0.5Cu 、(b) Sn-3Ag-0.5Cu-1Bi、(c) Sn-3Ag-0.5Cu-3Bi、(d)Sn-3Ag-0.5Cu-6Bi 43 圖3-2 SM 2000 CXE 熱風迴銲爐 44 圖3-3 DAGE 4000 接點強度試驗機 44 圖3-4 MTS-Tytron 250微小負荷試驗機 45 圖3-5銲錫球之迴銲實驗流程 46 圖3-6 銲錫球之高溫儲存試驗流程圖 47 圖4-1 Sn-Bi二元相圖 67 圖4-2迴銲前四種銲錫金相顯微組織:(a)Sn-3Ag-0.5Cu (b)Sn-3Ag-0.5Cu-1Bi (c)Sn-3Ag-0.5Cu-3Bi (d)Sn-3Ag-0.5Cu-6Bi 68 圖4-3 Sn-3Ag-0.5Cu銲錫迴銲後的錫球 69 圖4-4 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相 69 圖4-5 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時 (b)300小時 (c)500小時 (d)700小時 (e)1000小時 70 圖4-6 Cu6Sn5界面介金屬在型態上,由扇貝狀逐漸平坦化之示意圖 71 圖4-7 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 72 圖4-8 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 73 圖4-9 Sn-3Ag-0.5C迴銲後,在時效條件125℃1000小時下界面介金屬產生的裂紋 74 圖4-10 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)500小時;(c)700小時;(d)1000小時 75 圖4-11 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 76 圖4-12 Sn-3Ag-0.5Cu銲錫接點迴銲後, Ni(P)層產生凹洞(Cavity),時效條件: (a)150℃300小時、(b) 150℃700小時 77 圖4-13 Sn-3Ag-0.5Cu銲錫接點時效後,在銲錫與Ni(P層)間產生富P相與Ni-Sn-P相 78 圖4-14 Sn-Ni-P之EDX 78 圖4-15 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)500小時;(c)700小時;(d)1000小時 79 圖4-16 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 80 圖4-17 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 81 圖4-18 Sn-3Ag-0.5Cu-1Bi銲錫接點在時效溫度100℃下,界面介金屬產生裂紋:(a)300小時;(b)1000小時 82 圖4-19 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 83 圖4-20 Sn-3Ag-0.5Cu-1Bi銲錫接點與ENIG Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 84 圖4-21 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 85 圖4-22 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時 86 圖4-23 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 87 圖4-24 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 88 圖4-25 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 89 圖4-26 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 90 圖4-27 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 91 圖4-28 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 92 圖4-29 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 93 圖4-30 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 94 圖4-31 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 95 圖4-32 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 96 圖4-33 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時 97 圖4-34 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 98 圖4-35 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)700小時;(c)1000小時 99 圖4-36 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 100 圖4-37 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)300小時;(b)700小時;(c)1000小時 101 圖4-38迴銲後界面介金屬厚度與含Bi量之曲線圖 102 圖4-39 Sn-3Ag-0.5Cu銲錫球之剪力強度值 103 圖4-40 Sn-3Ag-0.5Cu銲錫接點經剪力試驗後之破斷面:(a)迴銲後、(b)時效條件100℃,500小時、(c)時效條件150℃,1000小時 104 圖4-41 Sn-3Ag-0.5Cu銲錫球之硬度值 105 圖4-42 Sn-3Ag-0.5Cu-1Bi銲錫球之剪力強度值 105 圖4-43 Sn-3Ag-0.5Cu-1Bi銲錫接點經剪力試驗後之破斷面:(a) 時效條件100℃,700小時、(b)時效條件125℃,1000小時、(c)時效條件150℃,1000小時 106 圖4-44 Sn-3Ag-0.5Cu-1Bi銲錫球之硬度值 107 圖4-45 Sn-3Ag-0.5Cu-3Bi銲錫球之剪力強度值 107 圖4-46 Sn-3Ag-0.5Cu-3Bi銲錫接點經剪力試驗後之破斷面,時效條件:(a)100℃,500小時、(b) 100℃,1000小時、(c) (d) 150℃,100小時 108 圖4-47 Sn-3Ag-0.5Cu-3Bi銲錫接點之破斷面 109 圖4-48 Sn-3Ag-0.5Cu-3Bi銲錫球之硬度值 109 圖4-49 Sn-3Ag-0.5Cu-6Bi銲錫球之剪力強度值 110 圖4-50 Sn-3Ag-0.5Cu-6Bi銲錫球之硬度值 110 圖4-51 Sn-3Ag-0.5Cu-6Bi銲錫接點經剪力試驗後之破斷面,時效條件:(a)100℃,100小時、(b) 125℃,500小時、(c) 125℃,1000 (d) 150℃,700小時 111 表目錄 表2-1PBGA之優缺點 33 表2-2 常見的無鉛銲錫種類 34 表2-3為一些國外大廠目前所使用的無鉛銲錫種類 35 表2-4為銲錫在不同環境下與不同基材表面處理之間的匹配程度 35 表2-5添加微量Bi含量對Sn-3Ag-0.5Cu的熔點之影響 36 表2-6添加微量Bi含量對Sn-3Ag-0.5Cu的機械性質之影響 36 表4-1四種銲錫熔點範圍 66 表4-2四種銲錫之硬度與拉伸強度值 66 表4-3 Sn-3Ag-0.5C-XBi銲錫內,Sn基地之含Bi量 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | Sn3Ag0.5Cu-xBi 球格陣列構裝 | zh_TW |
| dc.subject | Sn3Ag0.5Cu-xBi BGA | en |
| dc.title | Sn3Ag0.5Cu-xBi銲錫球格陣列構裝接點微結構與機械性質研究 | zh_TW |
| dc.title | Microstructure and mechanical properties of lead free Sn3Ag0.5Cu-xBi in BGA package | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 施漢章,林招松,林景崎,鄭明達,王彰盟,黃振東 | |
| dc.subject.keyword | Sn3Ag0.5Cu-xBi 球格陣列構裝, | zh_TW |
| dc.subject.keyword | Sn3Ag0.5Cu-xBi BGA, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 25.66 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
