Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31539
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊東漢
dc.contributor.authorHui-Min Wuen
dc.contributor.author吳惠敏zh_TW
dc.date.accessioned2021-06-13T03:14:28Z-
dc.date.available2007-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-08-01
dc.identifier.citation1. R. R. Tummala and E. J. Rymaszewski, “Microelectronic Packaging Handbook”, Van Nostrand Reinhold , 1989
2. J. H. Lau, “ Ball Grid Array Technology”, McGraw-Hill , 1995
3. Paul A. Magill, Philip A. Deane, J. Daniel Mis, and Glenn A. Rinne, “Flip Chip Overview”, IEEE , 1996
4. Freyman, B., Marrs, R , ”Ball Grid Array (BGA): The New Standard For High I/O Surface Mount Packages”, Proceedings of 1993 Japan International, June 9-11, 1993 Page(s):41 – 45
5. Flannery, J., “Surface mount power converters”, Eighteenth Annual IEEE, Volume 2, 9-13 Feb. 2003 Page(s):812 - 816 vol.2
6. Grigson, A., ”Soldering on: the importance of surface-mount technology”
IEE Review Volume 40, Issue 6, 17 Nov. 1994 Page(s):SUPL2 - SUPL4
7. Doot, R.K., “Motorola's first DCA product: the Gold Line Pen Pager”, Electronic Components and Technology Conference, 1996. Proceedings., 46th
28-31 May 1996 Page(s):535 - 539
8. Tarter, T., S., Goetz, M., P. and Papageorge, M., “BGA Performance Characteristics: a user’s design guide”, Proceedings of SMI conference, 1995, pp. 245-254.
9. Liu, J.J.; Berg, H.; Wen, Y.; Mulgaonker, S.; Bowlby, R.; Mawer, A., “Plastic bail grid array (PBGA) overview”, Materials Chemistry and Physics, v 40, n 4, May, 1995, p 236
10. Cook, Steve, ”Get the lead out”, Clean Tech, v 4, n 11, November/December, 2004, p 28-29
11. Hardy, Stephen, “EU to industry: Get the lead out”, Lightwave, v 22, n 4, April, 2005, p 1+31-33
12. B.Salam, N.N. Ekere, D. Rajkumar, “Study of the Microstructure of Sn-Ag-Cu Lead Free Solders and the Effect of Solder”, Volume on Intermetallic Layer Formation, 2001, Electronic Components and Technology Conference
13. Carol. Handwerker, “Lead-Free Solders: A Change in the Electronics infrastructure”, Circuitree, Sep.1999,pp2-8
14. Suraski, D., Seelig, K, “The current status of lead-free solder alloys.“, Electronics Packaging Manufacturing, IEEE Transactions on Volume 24, Issue 4, Oct. 2001 Page(s):244 - 248
15. Turbini, L.J., Munie, G.C., Bernier, D., Gamalski, J., Bergman, D.W., “Examining the environmental impact of lead-free soldering alternatives”, IEEE Transactions on Electronics Packaging Manufacturing, v 24, n 1, January, 2001, p 4-9
16. N. Biunno, “A Root Cause Failure Mechanism for Solder Joint Integrity of Electroless Nickle/ Immersion Gold Surface Finishes”, SMTA, Chicago,(1990)
17. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nikel/Immersion Gold”, IEEE Electron. Compon. And Technol. Conf.,(1998)952-961.
18. D. Cullen, “Immersion Silver Performance Results”, IPC Works’ 99, Minneapolis, MN, Oct.27 (1999).
19. J. M. Ferriter and S.P. Redmond, “Specialty Solder in microelectronic Assembly”, Materials Enginnering,Vol.109,No.8,1992,pp.8-9
20. C. Melton, “The Effect of Reflow Process Variables on the Wetability of Lead-Free Solders”, JOM,Vol.45,No.7,July,1993,pp.33-35
21. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au Foil”, Materials Chemistry and Physics, 53, 1998, pp.165-171
22. P. G. Kim and K. N. Tu, “Morphology of Wetting Reaction of Eutectic SnPb Solder on Au Foils”, Journal of Applied Physics, 80(7), 1 Oct., 1996, pp.3822-3827
23. D. H. Daebler, “An Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, Oct., 1991, pp.43-46
24. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au Foil”, Materials Chemistry and Physics, 53, 1998, pp.165-171
25. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, “Formation and Resettlement of (AuxSn1-x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish”, Journal of Electronic Materials, Vol. 29, No.10, 2000, pp.1175-1181
26. C. E. Ho, Y. M. Chen, and C. R. Kao, “Reaction Kinetics of Solder-Balls with Pads in BGA Packages during Reflow Soldering”, Journal of Electronic Materials, Vol.28, No.11, 1999, pp.1231-1237
27. C. E. Ho, W. T. Chen, and C. R. Kao, “Interactions Between Solder and Metallization During Long-Term Aging of Advanced Microelectronic Packages”, Journal of Electronic Materials, Vol.30, No.4, 2001, pp.379-385
28. C. E. Ho , S.Y. Tsai , C. R. Kao , “Reaction of solder with Ni/Au metallization for electronic packages during reflow soldering”, Volume 24, Issue 4, Nov. 2001 Page(s):493 – 498
29. Marks, Michael Raj, ”Effect of burn-in on shear strength of 63Sn-37Pb solder joints on an Au/Ni/Cu substrate Marks”, Journal of Electronic Materials, v 31, n 4, April, 2002, p 265-271
30. Ho, C.E., Shiau, L.C., Kao, C.R., “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1264-1269
31. Minor, A.M., Morris, J.W. Jr., “Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 31A, n 3, Mar, 2000, p 798-800
32. Minor, A.M., Morris, J.W. Jr., “Inhibiting growth of the Au0.5Ni0.5Sn4 intermetallic layer in Pb-Sn solder joints reflowed on Au/Ni metallization”, Journal of Electronic Materials, v 29, n 10, Oct, 2000, p 1170-1174
33. S. K. Kang and A. K. Sarkhel, “Lead(Pb)-Free Solders for Electronic Package”, Journal of Electronic Materials, Vol.23, No.8, 1994, pp.701-707
34. W. J. Tomlinson, I. Collier, “The Mechanical Properties and Microstructure of Copper and Brass Joint Soldered with Eutectic Tin-Bisumth Solder”, Journal of Materials Science 22 (1987) p1835 – 1839.
35. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Materials Review, Vol. 40, No.2, 1995, pp.65-93
36. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto and K. Niwa, “Solder Joint Reliability of Indium-Alloy Interconnection”, Journal of Electronic Materials, 24, 1996, pp.39-45
37. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 23, (1994), pp. 765-772
38. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbondingc”, IEEE Trans. on Comp., Pac. and Manu. Tech., 13, 4, 1990, pp.736-742
39. P. Biocca, “Global Update on Lead-Free Solders”, SMT, June, (1999), pp. 64-67
40. Gerbracht, Lisa; Cox, Malcom; Whiting, Scott, “Understanding the complexities of solder ball pull testing on BGAs”, Advanced Packaging, v 14, n 3, March, 2005, p 20-21
41. M. E. Loomans, and M. E. Fine, “Metallurgical and Materials Transactions A”, Vol. 31A, April 2000, p1155-1162.
42. L. Y. Tommi, H. Steen, and A. Forsten, “Development and Validation of a Lead-Free Alloys for Solder Paste Applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, Vol. 20, NO. 3, July 1997, p194-198.
43. D.R. Frear, J.W. Jang, J.K. Lin, C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM, v 53, n 6, June, 2001, p 28-32+38
44. T. Laine-Ylijoki, Steen, H., Forsten, A., “Development and validation of a lead-free alloy for solder paste applications”, Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on Volume 20, Issue 3, July 1997 Page(s):194 – 198
45. Harrison, M.R. , Vincent, J.H. , Steen, H.A.H., “Lead-free reflow soldering for electronics assembly”, Soldering and Surface Mount Technology, v 13, n 3, 2001, p 21-38
46. R. Mahidhara, “A Primer on Lead-Free Solder”, Chip Scale Review, March-April 2000.
47. Zhao, Jie , Wang, Xiu-Min, Wang, Lai, Qi, Lin, “Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder”, Journal of Alloys and Compounds, v 375, n 1-2, Jul 28, 2004, p 196-201
48. Korhonen, Tia-Marje, Vuorinen, Vesa, Kivilahti, Jorma K., “Interconnections based on Bi-coated SnAg solder balls”, IEEE Transactions on Advanced Packaging, v 24, n 4, November, 2001, p 515
49. Mutoh, Y. , Zhao, J., Miyashita, Y.; Kanchanomai, C., “Fatigue crack growth behaviour of lead-containing and lead-free solders”, Soldering and Surface Mount Technology, v 14, n 3, 2002, p 37-45+7+9
50. Kanchanomai, Chaosuan, Miyashita, Yukio, Mutoh, Yoshiharu, “Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders”, Journal of Electronic Materials, v 31, n 5, May, 2002, p 456-465
51. Kanchanomai, Chaosuan, “Cyclic deformation behavior of Sn-Ag-Cu-Bi solder”, Proceedings of 41st Kasetsart University Annual Conference, 2003, p 359-366
52. Huang, M. L., Wu, C. M. L., Lai, J.K.L., Chan, Y.C. “Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging”, Journal of Electronic Materials, v 29, n 8, Aug, 2000, p 1021-1026
53. Huang, M. L. ,Wang, L., “Effects of Cu, Bi, and In on microstructure and tensile properties of Sn-Ag-X(Cu, Bi, In) solders”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 36, n 6, June, 2005, p 1439-1446
54. Anderson, I. E., Cook, B.A., Harringa, J., Terpstra, R.L. “Microstructural modifications and properties of Sn-Ag-Cu solder joints induced by alloying”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1166-1174
55. Anderson, I. E., Harringa, J.L., “Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength”, Journal of Electronic Materials, v 33, n 12, December, 2004, p 1485-1496
56. Anderson, I. E., Foley, J.C., Cook, B.A., Harringa, J., Terpstra, R.L., Unal, O. “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1050-1059
57. Cook, B.A., Anderson, I.E., Harringa, J.L., Terpstra, R.L. “Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys”, Journal of Electronic Materials, v 31, n 11, November, 2002, Lead-free Solders and Materials Issues In Microelectronic Packaging, p 1190-1194
58. L. Liu, C. Anderson, and J. Liu, “Thermodynamic Assessment of Sn-Co Lead Free Solder System”, Journal of Electronic Materials,Vol.33,No.9,2004
59. Lee Y.C., “Studies on solder self-alignment”, Lasers and Electro-Optics Society Annual Meeting”, 1994. LEOS '94 Conference Proceedings. IEEE
V1, 31 Oct.-3 Nov., 1994,p 73 – 74
60. Hannibal Ted , Singer Adam, Nguyen Luu, Tracy Dan, Giberti Dick, “Preventing popcorning: What does it cost the industry? ”, Proceedings-Electronic Components and Technology Conference, 1998, p 471-476
61. Abtew M., “Lead-free solders in microelectronics”, Materials Science and Engineering: R: Reports, v 27, n 5-6, Jun, 2000, p 95-141
62. Sattiraju, S.V. Dang, B. Johnson, R.W., Li Y., Smith J.S., Bozack M.J. , “Wetting characteristics of Pb-free solder pastes and Pb-free PWB finishes”, Proceedings - Electronic Components and Technology Conference, 2001, p 1338-1344
63. Zribi A., Chromik R.R., Presthus, R., Clum J., Zavalij L., Cotts E.J., “Effect of Au-intermetallic compounds on mechanical reliability of Sn-Pb/Au-Ni-Cu joints”,
American Society of Mechanical Engineers, EEP, v 26-2, 1999, p 1573-1577
64. Blair, Howard D., Pan Tsung-Yu, Nicholson John M., Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders
Source: Proceedings - Electronic Components and Technology Conference, 1998, p 259-267
65. J. H. Lee, Journal of Electronic Material, Vol.30, No.9, 2001, p409-413
66. Humpston G., Evans D. S., “CONSTITUTION OF Au-AuSn-Pb PARTIAL TERNARY SYSTEM. ”, Materials Science and Technology, v 3, n 8, Aug, 1987, p 62l-627
67. Shen, Jun; Gao, Hou-Xiu; Liu, Yong-Chang; Wei, Chen; Yang, Yu-Qin, “Effect of cooling rates on the microstructure and mechanical behavior of Sn-Ag solder ”, Gongneng Cailiao/Journal of Functional Materials, v 36, n 1, January, 2005, p 47-49
68. Ochoa, F.; Williams, J.J.; Chawla, N. , “The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5Ag solder”, JOM, v 55, n 6, June, 2003, p 56-60
69. Lee, T.Y.; Tu, K.N.; Frear, D.R. , “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, Journal of Applied Physics, v 90, n 9, Nov 1, 2001, p 4502
70. Kao, Szu-Tsung; Lin, Yung-Chi; Duh, Jenq-Gong, “Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition”, Journal of Electronic Materials, v 35, n 3, March, 2006, p 486-493
71. Arulvanan, Periannan; Zhong, Zhaowei; Shi, Xunqing,“Effects of process conditions on reliability, microstructure evolution and failure modes of SnAgCu solder joints”, Microelectronics Reliability, v 46, n 2-4, February/April, 2006, p 432-439
72. Kim, P.G.; Tu, K.N. , “Fast dissolution and soldering reactions on Au foils
”, Materials Chemistry and Physics, v 53, n 2, May, 1998, p 165-171
73. H. M. Wu, F. C. Wu, T. H. Chuang, “Intermetallic Reactions in a Sn-20In-2.8Ag Solder BGA Package with Au/Ni/Cu Pads”, J. Electron. Mat., v 34, n 11, November, 2005.
74. Zhou, Jian; Sun, Yangshan; Xue, Feng, “Properties of low melting point Sn-Zn-Bi solders”,Journal of Alloys and Compounds, v 397, n 1-2, Jul 19, 2005, p 260-264
75. Wu, C.M.L.; Huang, M.L.; Lai, J.K.L.; Chan, Y.C. , “Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying”, Journal of Electronic Materials, v 29, n 8, Aug, 2000, p 1015-1020
76. Wu, C.M. Lawrence; Huang, Mingliang L. ,“Microstructural evolution of lead-free Sn-Bi-Ag-Cu SMT joints during aging”, IEEE Transactions on Advanced Packaging, v 28, n 1, February, 2005, p 128-133
77. Kang, S.K.; Choi, W.K.; Yim, M.J.; Shih, D.Y , “.Studies of the mechanical and electrical properties of lead-free solder joints”, Journal of Electronic Materials, v 31, n 11, November, Lead-free Solders and Materials Issues In Microelectronic Packaging, 2002, p 1292-1303
78. Zhao, J.; Mutoh, Y.; Miyashita, Y.; Mannan, S.L. , “Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders”,
Source: Journal of Electronic Materials, v 31, n 8, August, 2002, p 879-886
79. Lin Qi; Jie Zhao; Xiu-min Wang; Lai Wang , “The effect of Bi on the IMC growth in Sn-3Ag-0.5Cu solder interface during aging process”, Business of Electronic Product Reliability and Liability, 2004 International Conference on
Apr 27-30, 2004 Page(s):42 – 46
80. Olsen, Dennis R.; Berg, Howard M. Source, “ PROPERTIES OF DIE BOND ALLOYS RELATING TO THERMAL FATIGUE. ”,IEEE Transactions on Components, Hybrids and Manufacturing Technology, v CHMT-2, n 2, June, 1979, p 257-263
81. Lee, Hwa-Teng; Chen, Ming-Hung; Jao, Huei-Mei; Hsu, Chin-Jui, “ Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints”, Journal of Electronic Materials, v 33, n 9, September, 2004, p 1048-1054
82. Unal, O.; Anderson, I.E.; Harringa, J.L.; Terpstra, R.L.; Cook, B.A.; Foley, J.C. , “Application of an asymmetrical four point bend shear test to solder joints”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1206-1213
83. Seelig, K.; Suraski, D., “The status of lead-free solder alloys”, Electronic Components and Technology Conference, 2000. 2000 Proceedings. 50th
21-24 May 2000 ,p 1405 – 1409
84. Suganuma, K.; Kim, K.S.; Huh, S.H. , “Selection of Sn-Ag-Cu lead-free alloys”, Proceedings of SPIE - The International Society for Optical Engineering, v 4587, 2001, p 529-534
85. Zeng, K.; Tu, K.N. , “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering, Reports, v 38, n 2, Jun 14, 2002, p 55
86. Mei, Z.; Morris, J.W. Jr, “Superplastic creep of low melting point solder joints”, Journal of Electronic Materials, v 21, n 4, Apr, 1992, p 401-407
87. Sharif, Ahmed; Chan, Y.C. Source, “Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization”, Thin Solid Films, v 504, n 1-2, May 10, Proceedings of The International Conference on Materials for Advanced Technologies (ICMAT 2005) Symposium, 2006, p 431-435
88. Sharif, Ahmed; Chan, Y.C. , “Interfacial reactions on electrolytic Ni and electroless Ni(P) metallization with Sn-In-Ag-Cu solder”, Journal of Alloys and Compounds, v 393, n 1-2, May 3, 2005, p 135-140
89. Coyle, Richard J.; Serafino, Anthony J.; Solan, Patrick P, “.Ball shear versus ball pull test methods for evaluating interfacial failures in area array packages”, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 2002, p 200-205
90. Kariya, Yoshiharu; Hirata, Yasunori; Otsuka, Masahisa , “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, Journal of Electronic Materials, v 28, n 11, Nov, 1999, p 1263-1269
91. Kariya, Y.; Morihata, T.; Hazawa, E.; Otsuka, M. , “Assessment of low-cycle fatigue life of Sn-3.5mass%Ag-X (X = Bi or Cu) alloy by strain range partitioning approach”, Journal of Electronic Materials, v 30, n 9, September, 2001, Lead-Free Solder Materials and Soldering Technologies, p 1184-1189
92. Yoon, Jeong-Won; Lee, Chang-Bae; Jung, Seung-Boo , “Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment”, Journal of Electronic Materials, v 32, n 11, November, 2003, p 1195-1202
93. Chuang, Chiang-Ming; Lin, Kwang-Lung, “Effect of Microelements Addition on the Interfacial Reaction between Sn-Ag-Cu Solders and the Cu Substrate”, Journal of Electronic Materials, v 32, n 12, December, 2003, p 1426-1431
94. Chuang Chiang-Ming, Shih Po-Cheng, Lin Kwang-Lung, 2002 Int’l Symposium on Electronic Materials and Package, p 360-365
95. Chuang, Chiang-Ming; Shih, Po-Cheng; Lin, Kwang-Lung, “Mechanical Strength of Sn-3.5Ag-Based Solders and Related Bondings”, Journal of Electronic Materials, v 33, n 1, January, 2004, p 1-6
96. Chen, Guohai; Ma, Jusheng; Geng, Zhiting, “Fabrication and properties of lead-free Sn-Ag-Cu-Ga solder alloy”, Materials Science Forum, v 475-479, n III, 2005, p 1747-1750
97. Chen, Kang-I.; Lin, Kwang-Lung, “The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys-the effect of Ga”, Journal of Electronic Materials, v 32, n 10, October, 2003, p 1111-1116
98. D. H. DaeblercAn, “ Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, Oct., 1991, pp.43-46
99. Artaki, I.; Jackson, A.M.; Vianco, P.T. Artaki, I.; Jackson, A.M.; Vianco, P.T. , “Evaluation of lead-free solder joints in electronic assemblies”, Journal of Electronic Materials, v 23, n 8, Aug, 1994, p 757-764
100. 鄭明達,Sn-Ag-Cu銲錫球格陣列構裝界面反應研究,國立臺灣大學博士論文,2003年
101. Lee, T.Y.; Choi, W.J.; Tu, K.N.; Jang, J.W.; Kuo, S.M.; Lin, J.K.; Frear, D.R.; Zeng, K.; Kivilahti, J.K. , “Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, v 17, n 2, February, 2002, p 291-301
102. Chia, Julian Yan Hon; Cotterell, Brian; Chai, Tai Chong, “The mechanics of the solder ball shear test and the effect of shear rate”, Materials Science and Engineering A, v 417, n 1-2, Feb 15, 2006, p 259-274
103. Nair, Krishna K.; Perkinson, Nat; Rinne, Glenn A. , “Solder shear strength for process control”, Proceedings - Electronic Components and Technology Conference, 2003, p 250-255
104. C. W. Huang, K. Suganuma, M. Kiso, and S. Hashimoto, J. Mater. Res.,18, 2003, p 2540
105. YoonChul Sohn; Jin Yu; Kang, S.K.; DaYuan Shih; TaekYeong Lee , “Effect of Intermetallics Spalling on the Mechanical Behavior of Electroless Ni(P)/PbFree Solder Interconnection”, Electronic Components and Technology, 2005. ECTC '05. Proceedings, 31 May-3 June 2005 Page(s):83 – 88
106. M. J. Rizvi, Y.C. Chan, C. bailey, H. Lu, M. N. Islam, “Effect of adding 1wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging”, Journal of Alloys and Compound ,407,2006, p 208-214
107. Hwang, Chi-Won; Lee, Jung-Goo; Suganuma, Katsuaki; Mori, Hirotaro , “interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating”, Journal of Electronic Materials, v 32, n 2, February, 2003, p 52-62
108. Jin-Won Choi; Tae-Sung Oh, “Shear strength and aging characteristics of Sn-Pb and Sn-Ag-Bi solder bumps”, Electronic Materials and Packaging, 2001. EMAP 2001. Advances in 19-22 Nov. 2001 Page(s):433 - 437
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31539-
dc.description.abstract本研究以添加不同含量的Bi元素在Sn3Ag0.5Cu銲錫內作為研究對象,除了針對銲錫本身微結構觀察之外,並與Au/Ni(P)/Cu接墊作接點界面反應與機械性質研究。
實驗結果顯示,當Bi的含量添加到3wt%時,銲錫內部可觀察到微量的純Bi析出,Bi含量達到6wt%時,觀察到Sn基地內的Bi析出量越多。而在熔點方面,Bi可以降低熔點溫度,且隨著Bi含量的添加,硬度與拉伸強度上升,但伸長率下降。
在球格陣列構裝方面,Sn3Ag0.5Cu在時效150℃時,銲錫內的AuSn4介金屬轉變成(Au,Ni)Sn4,界面介金屬成分也轉變為 (Cu,Ni,Au)6Sn5。而在添加Bi的Sn3Ag0.5Cu系列,在界面處有發現(Cu,Ni,Au)3Sn4介金屬生成。在總體界面介金屬厚度而言,與電鍍 Ni研究100相較,因在無電鍍Ni層之間有富P之Ni層與Ni3(Sn,P)薄層,為IMC/ Ni3(Sn,P)/P-rich Ni/Ni(P),而此Ni3(Sn,P)薄層可視為Ni的擴散阻礙層,故厚度較為薄。在剪力強度方面,Sn3Ag0.5Cu有時效軟化問題,添加微量Bi後剪力強度增加且時效後呈現穩定剪力強度值,但當添加達到3wt%以後,破斷面會由延性破壞轉為脆性破壞。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T03:14:28Z (GMT). No. of bitstreams: 1
ntu-95-D92527008-1.pdf: 26279300 bytes, checksum: 7323be683343def9073f9cb90aed37cb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要…………………………………………………………………… I
目錄 Ⅱ
圖目錄 V
表目錄 XⅡ
壹、研究動機 1
貳、理論與文獻回顧 5
2-1 電子構裝技術簡介 5
2-1-1 球格陣列構裝的發展 8
2-1-2球格陣列構裝的主要破壞因素 10
2-1-3無鉛銲錫的發展 12
2-1-4印刷電路板之表面處理 14
2-2鉛錫合金與常見無鉛銲錫相關文獻 17
2-2-1 Sn-Pb銲錫的金脆現象 17
2-2-2常見二元無鉛銲錫特性 19
2-2-3常見三元無鉛銲錫特性 20
2-2-4添加第四元元素之無鉛銲錫研究 22
2-2-4-1無鉛銲錫添加Bi元素之研究 22
2-2-4-2 無鉛銲錫添加In、Co、Fe、Sb、Ni、Ga之研究 25
2-2-5球格陣列構裝接點可靠度 28
參、實驗規劃及方法 39
3-1無鉛銲錫選用與配置 39
3-2基板選用 40
3-3主要使用儀器設備: 40
3-4球格陣列構裝試驗 41
3-4-1銲錫球之迴銲試驗 41
3-4-2銲錫球之高溫儲存試驗 42
肆、結果與討論 48
4-1 Sn-3Ag-0.5Cu-XBi銲錫之研究 48
4-1-1 Sn-3Ag-0.5Cu-XBi銲錫合金之熔點 48
4-1-2 Sn-3Ag-0.5Cu-XBi銲錫合金之硬度與拉伸強度 49
4-2 Sn-3Ag-0.5Cu-XBi銲錫之球格陣列構裝研究 50
4-2-1 Sn-3Ag-0.5Cu銲錫之球格陣列構裝研究 50
4-2-2 Sn-3Ag-0.5Cu-1Bi銲錫之球格陣列構裝研究 55
4-2-3 Sn-3Ag-0.5Cu-3Bi銲錫之球格陣列構裝研究 57
4-2-4 Sn-3Ag-0.5Cu-6Bi銲錫之球格陣列構裝研究 60
4-2-5 添加Bi對界面介金屬厚度影響 61
4-3 Sn-3Ag-0.5Cu-XBi之推球強度 62
4-3-1 Sn-3Ag-0.5Cu之推球強度 62
4-3-2 Sn-3Ag-0.5Cu-XBi之推球強度 63
伍、結論 112
陸、參考文獻 114
附錄、論文發表 124
圖目錄
圖2-1 電子構裝的4個層次 31
圖2-2覆晶接合之特性 31
圖2-3 Direct Chip Attach (DCA)之示意圖 32
圖2-4 銲錫球自動對位示意圖 32
圖2-5依承載基板而分類的球格陣列構裝 33
圖2.7 推球試驗示意圖 37
圖2.8 推球試驗的破壞模式分類 38
圖3-1 本實驗所使用的銲錫之DSC曲線: (a) Sn-3Ag-0.5Cu 、(b) Sn-3Ag-0.5Cu-1Bi、(c) Sn-3Ag-0.5Cu-3Bi、(d)Sn-3Ag-0.5Cu-6Bi 43
圖3-2 SM 2000 CXE 熱風迴銲爐 44
圖3-3 DAGE 4000 接點強度試驗機 44
圖3-4 MTS-Tytron 250微小負荷試驗機 45
圖3-5銲錫球之迴銲實驗流程 46
圖3-6 銲錫球之高溫儲存試驗流程圖 47
圖4-1 Sn-Bi二元相圖 67
圖4-2迴銲前四種銲錫金相顯微組織:(a)Sn-3Ag-0.5Cu (b)Sn-3Ag-0.5Cu-1Bi (c)Sn-3Ag-0.5Cu-3Bi (d)Sn-3Ag-0.5Cu-6Bi 68
圖4-3 Sn-3Ag-0.5Cu銲錫迴銲後的錫球 69
圖4-4 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相 69
圖4-5 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時 (b)300小時 (c)500小時 (d)700小時 (e)1000小時 70
圖4-6 Cu6Sn5界面介金屬在型態上,由扇貝狀逐漸平坦化之示意圖 71
圖4-7 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 72
圖4-8 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 73
圖4-9 Sn-3Ag-0.5C迴銲後,在時效條件125℃1000小時下界面介金屬產生的裂紋 74
圖4-10 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)500小時;(c)700小時;(d)1000小時 75
圖4-11 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 76
圖4-12 Sn-3Ag-0.5Cu銲錫接點迴銲後, Ni(P)層產生凹洞(Cavity),時效條件: (a)150℃300小時、(b) 150℃700小時 77
圖4-13 Sn-3Ag-0.5Cu銲錫接點時效後,在銲錫與Ni(P層)間產生富P相與Ni-Sn-P相 78
圖4-14 Sn-Ni-P之EDX 78
圖4-15 Sn-3Ag-0.5Cu銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)500小時;(c)700小時;(d)1000小時 79
圖4-16 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 80
圖4-17 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 81
圖4-18 Sn-3Ag-0.5Cu-1Bi銲錫接點在時效溫度100℃下,界面介金屬產生裂紋:(a)300小時;(b)1000小時 82
圖4-19 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 83
圖4-20 Sn-3Ag-0.5Cu-1Bi銲錫接點與ENIG Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 84
圖4-21 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 85
圖4-22 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時 86
圖4-23 Sn-3Ag-0.5Cu-1Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 87
圖4-24 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 88
圖4-25 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 89
圖4-26 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 90
圖4-27 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 91
圖4-28 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 92
圖4-29 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 93
圖4-30 Sn-3Ag-0.5Cu-3Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 94
圖4-31 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後的界面金相圖 95
圖4-32 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時;(e)1000小時 96
圖4-33 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)300小時;(c)500小時;(d)700小時 97
圖4-34 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在125℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 98
圖4-35 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在100℃下不同時間之銲錫內部顯微組織圖:(a)100小時;(b)700小時;(c)1000小時 99
圖4-36 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之界面金相組織圖:(a)100小時;(b)300小時;(c)700小時;(d)1000小時 100
圖4-37 Sn-3Ag-0.5Cu-6Bi銲錫接點與Au/Ni(P)/Cu銲墊迴銲後,在150℃下不同時間之銲錫內部顯微組織圖:(a)300小時;(b)700小時;(c)1000小時 101
圖4-38迴銲後界面介金屬厚度與含Bi量之曲線圖 102
圖4-39 Sn-3Ag-0.5Cu銲錫球之剪力強度值 103
圖4-40 Sn-3Ag-0.5Cu銲錫接點經剪力試驗後之破斷面:(a)迴銲後、(b)時效條件100℃,500小時、(c)時效條件150℃,1000小時 104
圖4-41 Sn-3Ag-0.5Cu銲錫球之硬度值 105
圖4-42 Sn-3Ag-0.5Cu-1Bi銲錫球之剪力強度值 105
圖4-43 Sn-3Ag-0.5Cu-1Bi銲錫接點經剪力試驗後之破斷面:(a) 時效條件100℃,700小時、(b)時效條件125℃,1000小時、(c)時效條件150℃,1000小時 106
圖4-44 Sn-3Ag-0.5Cu-1Bi銲錫球之硬度值 107
圖4-45 Sn-3Ag-0.5Cu-3Bi銲錫球之剪力強度值 107
圖4-46 Sn-3Ag-0.5Cu-3Bi銲錫接點經剪力試驗後之破斷面,時效條件:(a)100℃,500小時、(b) 100℃,1000小時、(c) (d) 150℃,100小時 108
圖4-47 Sn-3Ag-0.5Cu-3Bi銲錫接點之破斷面 109
圖4-48 Sn-3Ag-0.5Cu-3Bi銲錫球之硬度值 109
圖4-49 Sn-3Ag-0.5Cu-6Bi銲錫球之剪力強度值 110
圖4-50 Sn-3Ag-0.5Cu-6Bi銲錫球之硬度值 110
圖4-51 Sn-3Ag-0.5Cu-6Bi銲錫接點經剪力試驗後之破斷面,時效條件:(a)100℃,100小時、(b) 125℃,500小時、(c) 125℃,1000 (d) 150℃,700小時 111
表目錄
表2-1PBGA之優缺點 33
表2-2 常見的無鉛銲錫種類 34
表2-3為一些國外大廠目前所使用的無鉛銲錫種類 35
表2-4為銲錫在不同環境下與不同基材表面處理之間的匹配程度 35
表2-5添加微量Bi含量對Sn-3Ag-0.5Cu的熔點之影響 36
表2-6添加微量Bi含量對Sn-3Ag-0.5Cu的機械性質之影響 36
表4-1四種銲錫熔點範圍 66
表4-2四種銲錫之硬度與拉伸強度值 66
表4-3 Sn-3Ag-0.5C-XBi銲錫內,Sn基地之含Bi量 68
dc.language.isozh-TW
dc.subjectSn3Ag0.5Cu-xBi 球格陣列構裝zh_TW
dc.subjectSn3Ag0.5Cu-xBi BGAen
dc.titleSn3Ag0.5Cu-xBi銲錫球格陣列構裝接點微結構與機械性質研究zh_TW
dc.titleMicrostructure and mechanical properties of lead free Sn3Ag0.5Cu-xBi in BGA packageen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee施漢章,林招松,林景崎,鄭明達,王彰盟,黃振東
dc.subject.keywordSn3Ag0.5Cu-xBi 球格陣列構裝,zh_TW
dc.subject.keywordSn3Ag0.5Cu-xBi BGA,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2006-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
25.66 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved