Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31521Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Mu-Fang Lee | en |
| dc.contributor.author | 李睦方 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:14:11Z | - |
| dc.date.available | 2006-08-09 | |
| dc.date.copyright | 2006-08-09 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-08-04 | |
| dc.identifier.citation | [1] Bollen, K.A. 1989. Structural Equations with Latent Variables. Wiley. New York.
[2] Bhattacharya, S., Ho, M.H. R., and Purkayastha, S., 2006. A Bayesian approach to modeling dynamic effective connectivity with fMRI data. NeuroImage 30, 794-812. [3] Buechel, C. and Friston, K.J., 1997. Modulation of Connectivity in Visual Pathways by Attention: Cortical Interactions Evaluated with Structural Equation Modelling and fMRI. Cereb. Cortex 7, 768-778. [4] Buechel, C. and Friston, K.J., 1998. Dynamic changes in effective connectivity characterized by variable parameter regression and Kalman filtering. Human Brain Mapping 6, 403-408. [5] Bullmore, E., Horwitz, B., Honey, G., Brammer, M., Williams, S., and Sharma, T., 2000. How Good Is Good Enough in Path Analysis of fMRI Data? NeuroImage 11, 289-301. [6] Della-Maggiore et. al (2002), An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data, NeuroImage 17, 19-28. [7] DeMarco, G., DeBonis, M., Vrignaud, P., Henry-Feugeas, M.C., and Peretti, I., 2006. Changes in effective connectivity during incidental and intentional perception of fearful faces. NeuroImage 30, 1030-1037. [8] Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., Grodd, W., and Wildgruber. D., 2006. Cerebral pathways in processing of affective prosody: A dynamic causal modeling study. NeuroImage 30, 580-587. [9] Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R., Price, C., Zeki, S., Ashburner, J., Penny, W. (Eds.), 2004. Human Brain Function (2nd ed.). Academic Press, Amsterdam. [10] Friston, K.J., 1994. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 56-78. [11] Friston, K.J., Buechel, C., Fink, G.R., Morris, J., Rolls, E., Dolan, R.J., 1997. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218-229. [12] Friston K.J., Price C.J., 2001. Dynamic representations and generative models of brain function. Brain Research Bulletin 54, 275-285. [13] Friston K.J., 2002. Bayesian Estimation of Dynamical Systems: An Application to fMRI. NeuroImage 16, 513-530. [14] Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19, 1273-1302. [15] Goncalves, M.S., Hall, D.A., Johnsrude, I.S., and Haggard, M.P., 2001. Can Meaningful Effective Connectivities Be Obtained between Auditory Cortical Regions? NeuroImage 14, 1353-1360 [16] Goncalves, M.S., Hall, D.A., 2003. Connectivity analysis with structural equation modelling: an example of the effects of voxel selection. NeuroImage 20, 1455-1467. [17] Harrison, L., Penny, W.D., Friston, K., 2003. Multivariate autoregressive modelling of fMRI time series. NeuroImage 19, 416-429. [18] Kass, R.E., Raftery, A.E., 1993. Bayes factors and model uncertainty. Technical Report 254, University of Washington. [19] Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Am. Stat. Assoc. 90, 773-795. [20] Lee, L., Friston, K.J., Horwitz, B., 2006. Large-scale neural models and dynamic causal modelling. NeuroImage 3, 1243-1254. [21] McIntosh, A.R., Gonzales-Lima, F., 1994. Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping 2, 2-22. [22] McIntosh, A.R., Bookstein, F.L., Haxby, J.V., Grady, C.L., 1996. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143-157. [23] McIntosh, A.R., 2000. Towards a network theory of cognition. Neural Network 13, 861-870. [24] McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., and Sejnowski, T. J., 1998. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3):160-88. [25] Mechelli, Andrea, Penny, W. D., Price, C. J., Gitelman, D. R., Friston, K.J., 2002. Effective Connectivity and Intersubject Variability: Using a Multisubject Network to Test Differences and Commonalities. NeuroImage 17, 1459-1469. [26] Nomura, M., Ohira, H., Haneda, K., Iidaka, T., Sadato, N., Okada, T., and Yonekura, Y., 2004. Functional association of the amyglada and ventral prefrontal cortex during cognitive of facial expressions primed by masked angry faces: an event-related fMRI study. NeuroImage 21, 352-363. [27] Penny, W.D., Stephan, K.E., Mechelli, A., Friston, K.J., 2004. Comparing dynamic causal models. Neuroimage 22, 1157-1172. [28] Penny, W.D., Stephan, K.E., Mechelli, A., Friston, K.J., 2004. Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23, S264-274. [29] Raftery, A.E., 1995. Bayesian model selection in social research. In: Marsden, P.V. (Ed), Sociological Methodology, 111-196 (Cambridge, MA). [30] Rowe, J.B., Stephan, K. E., Friston K., Frackowiak, R.S.J., and Passingham, R. E., 2005. The Prefrontal Cortex shows Context-specific Changes in Effective Connectivity to Motor or Visual Cortex during the Selection of Action or Colour. Cereb Cortex 15, 85-95. [31] Stephan K.E., Penny, W.D., Marshall, J.C., Fink, G.R., and Friston, K.J., 2005. Investigating the Functional Role of Callosal Connections with Dynamic Causal Models. Ann. N.Y. Acad. Sci. 1064: 16-36. [32] Zheng, X.B. and Rajapakse, J.C., 2006. Learning functional structure from fMRI images. Neuroimage 31, 1601-1613. [33] Zhuang, J.C., LaConte, S., Peltier, S., Zhang, K., Hu, X.P., 2005. Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. NeuroImage 25, 462-470. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31521 | - |
| dc.description.abstract | 功能性核磁共振影像讓我們得以看到當大腦在感知人臉情緒時,腦部何處產生活動的改變。過去許多相關文獻指出,amygdala (AMY)、anterior cingulate cortex (ACC)、orbital-frontal cortex (OFC)與人類處理和感知情緒有關。至於這些大腦區域之間是如何相互影響,其中的機轉還不是很明朗。本論文在研究由這四個大腦區域組成的情緒網路,探討兩組受試者之中,健康個體與患者之間,情緒網路的有效聯結架構有何共通性和差異性. 11位健康個體和8位精神分裂症患者參與受試,對特定目標臉部情緒進行辨識的同時,進行功能性核磁共振影像掃描. Dynamic causal modeling (DCM)結合貝氏因子則是用於產生、推論、比較數個可能的情緒網路模型。而這些模型被指定不同的調節性聯結,內在聯結以及感覺輸入起源。 群組分析結果顯示,影像資料較支持以FFG為感覺輸入起源, 缺少從AMY, ACC和OFC到FFC等返回路徑的模型。此外,調節性聯結的作用呈現明顯的個體差異性。我們發現,調節性作用所造成大腦有效性聯結的改變,隨處理情緒物質的不同而有差別,健康受試者與患者之間也有差距。 | zh_TW |
| dc.description.abstract | The present work studied the connectivity architecture in emotional network comprising four brain areas: amygdala (AMY), anterior cingulate cortex (ACC), orbital-frontal cortex (OFC) and fusiform gyrus (FFG). 11 healthy controls and 8 schizophrenic patients underwent block-design fMRI analysis, while making judgment of a particular target facial emotion. Dynamic causal modeling (DCM) in conjunction with Bayes factors was used to compare models with different modulatory connectivity, intrinsic connectivity patterns and input regions in this emotional network. Comparison of group level showed superiority of the model in which the fusiform gyrus (FFG) serving as input region to receive external input. Moreover, models without backward connections from AMY, ACC and OFC to FFG were superior to models with fully connected structure. Furthermore, modulatory connectivity showed significant individual difference among control subjects. Our findings also illustrated differential brain connectivity due to the influence of modulatory effect (e.g. cognitive context, attention and learning), between healthy controls and schizophrenic patients, and between different types of emotional material. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:11Z (GMT). No. of bitstreams: 1 ntu-95-R91548045-1.pdf: 4531936 bytes, checksum: 0dacb6f276bde0dd6d46745ba53be8b6 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 10
1.1 Motivation 10 1.2 Thesis Structure 11 Chapter 2 Background 12 2.1 Literature Survey of Brain Connectivity Analysis 12 2.1.1 Multivariate Statistical Modeling 12 2.1.2 Structural Equation Modeling 13 2.1.3 Time-Varying Parameter Regression Modeling 15 2.1.4 Bayesian Network Modeling 16 2.2 Neuronal Model 17 Chapter 3 Materials 18 3.1 Subjects 18 3.2 Study Design 18 3.3 Data Acquisition 20 Chapter 4 Dynamic Causal Modeling 21 4.1 General Model 21 4.2 Estimation 25 4.3 Inference 27 4.3.1 Bayes Factors 27 4.3.2 Group Bayes Factors 28 Chapter 5 Comparison and Determination 30 5.1 Determining Sensory Input Source 30 5.2 Determining Intrinsic Connectivity 31 5.3 Determining Modulatory Connectivity 33 Chapter 6 Results 36 6.1 Determining Sensory Input Source 36 6.2 Determining Intrinsic Connectivity 37 6.3 Determining Modulatory Connectivity 44 6.4 Differences between Controls and Patients 46 Chapter 7 Discussion 53 Chapter 8 Conclusion 55 | |
| dc.language.iso | en | |
| dc.subject | 情緒 | zh_TW |
| dc.subject | 精神分裂症 | zh_TW |
| dc.subject | 有效性聯結 | zh_TW |
| dc.subject | DCM | zh_TW |
| dc.subject | 功能性核磁共振影像 | zh_TW |
| dc.subject | effective connectivity | en |
| dc.subject | DCM | en |
| dc.subject | fMRI | en |
| dc.subject | emotion | en |
| dc.subject | schizophrenia | en |
| dc.title | 臉部情緒感知對於大腦有效性聯結的改變 | zh_TW |
| dc.title | Changes in Effective Connectivity during Perception of Facial Expression: A Dynamic Causal Modeling Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉絮愷,歐陽彥正 | |
| dc.subject.keyword | 功能性核磁共振影像,DCM,有效性聯結,情緒,精神分裂症, | zh_TW |
| dc.subject.keyword | fMRI,DCM,effective connectivity,emotion,schizophrenia, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 4.43 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
