Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young, Ph. D.)
dc.contributor.authorChan-Tia Wangen
dc.contributor.author王承泰zh_TW
dc.date.accessioned2021-06-13T03:14:08Z-
dc.date.available2011-09-18
dc.date.copyright2011-09-18
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation1. Harman, D., Aging - a Theory Based on Free-Radical and Radiation-Chemistry. Journals of Gerontology, 1956. 11(3): p. 298-300.
2. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621.
3. Schmitt, C.A., Cellular senescence and cancer treatment. Biochimica Et Biophysica Acta-Reviews on Cancer, 2007. 1775(1): p. 5-20.
4. Moyzis, R.K., et al., A Highly Conserved Repetitive DNA-Sequence, (Ttaggg)N, Present at the Telomeres of Human-Chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(18): p. 6622-6626.
5. Meyne, J., R.L. Ratliff, and R.K. Moyzis, Conservation of the Human Telomere Sequence (Ttaggg)N among Vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(18): p. 7049-7053.
6. Zakian, V.A., Telomeres - Beginning to Understand the End. Science, 1995. 270(5242): p. 1601-1607.
7. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres Shorten during Aging of Human Fibroblasts. Nature, 1990. 345(6274): p. 458-460.
8. Allsopp, R.C., et al., Telomere Length Predicts Replicative Capacity of Human Fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(21): p. 10114-10118.
9. Vaziri, H., et al., Loss of Telomeric DNA during Aging of Normal and Trisomy-21 Human-Lymphocytes. American Journal of Human Genetics, 1993. 52(4): p. 661-667.
10. Olovnikov, A.M., [Aging is a result of a shortening of the 'differotene' in the telomere due to end under-replication and under-repair of DNA]. Izv Akad Nauk SSSR Biol, 1992(4): p. 641-3.
11. Olovniko.Am, Principle of Marginotomy in Template Synthesis of Polynucleotides. Doklady Akademii Nauk Sssr, 1971. 201(6): p. 1496-&.
12. Olovnikov, A.M., [Principle of marginotomy in template synthesis of polynucleotides]. Dokl Akad Nauk SSSR, 1971. 201(6): p. 1496-9.
13. Chiu, C.P., et al., Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells, 1996. 14(2): p. 239-248.
14. Bodnar, A.G., et al., Extension of life-span by introduction of telomerase into normal human cells. Science, 1998. 279(5349): p. 349-352.
15. Feng, J., et al., The RNA component of human telomerase. Science, 1995. 269(5228): p. 1236-41.
16. Nakamura, T.M., et al., Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997. 277(5328): p. 955-9.
17. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13.
18. Yu, G.L., et al., In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature, 1990. 344(6262): p. 126-32.
19. Chen, Q. and B.N. Ames, Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4130-4.
20. Kaneko, T., et al., Accumulation of oxidative DNA damage, 8-oxo-2'-deoxyguanosine, and change of repair systems during in vitro cellular aging of cultured human skin fibroblasts. Mutat Res, 2001. 487(1-2): p. 19-30.
21. Gire, V., et al., DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J, 2004. 23(13): p. 2554-63.
22. Parrinello, S., et al., Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol, 2003. 5(8): p. 741-7.
23. Bringold, F. and M. Serrano, Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol, 2000. 35(3): p. 317-29.
24. Ferbeyre, G., et al., Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol, 2002. 22(10): p. 3497-508.
25. Balin, A.K., et al., Effects of establishing cell cultures and cell culture conditions on the proliferative life span of human fibroblasts isolated from different tissues and donors of different ages. Exp Cell Res, 2002. 274(2): p. 275-87.
26. Balin, A.K., L. Pratt, and R.G. Allen, Effects of ambient oxygen concentration on the growth and antioxidant defenses of of human cell cultures established from fetal and postnatal skin. Free Radic Biol Med, 2002. 32(3): p. 257-67.
27. Ogryzko, V.V., et al., Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Molecular and Cellular Biology, 1996. 16(9): p. 5210-5218.
28. Tresini, M., et al., A phosphatidylinositol 3-kinase inhibitor induces a senescent-like growth arrest in human diploid fibroblasts. Cancer Res, 1998. 58(1): p. 1-4.
29. Volonte, D., et al., Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell, 2002. 13(7): p. 2502-17.
30. Chook, Y.M. and G. Blobel, Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature, 1999. 399(6733): p. 230-7.
31. Levi-Montalcini, R., The Nerve Growth Factor. Ann N Y Acad Sci, 1964. 118: p. 149-70.
32. Cohen, S., Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 1962. 237: p. 1555-62.
33. Gullick, W.J. and F.E. Jones, The epidermal growth factor family of ligands and receptors grows and grows. J Mammary Gland Biol Neoplasia, 2008. 13(2): p. 157.
34. Schultz, D.J., Special design considerations for Alzheimer's facilities. Contemp Longterm Care, 1987. 10(11): p. 48-56, 112.
35. Breuing, K., et al., Growth factors in the repair of partial thickness porcine skin wounds. Plastic and Reconstructive Surgery, 1997. 100(3): p. 657-664.
36. Ito, T., et al., FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun, 2007. 359(1): p. 108-14.
37. Stein, G.S., et al., Transcriptional control within the three-dimensional context of nuclear architecture: requirements for boundaries and direction. J Cell Biochem, 1999. Suppl 32-33: p. 24-31.
38. Robbins, E., E.M. Levine, and H. Eagle, Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med, 1970. 131(6): p. 1211-22.
39. Brunk, U., et al., Residual Bodies and Aging in Cultured Human Glia Cells - Effect of Entrance into Phase Iii and Prolonged Periods of Confluence. Experimental Cell Research, 1973. 79(1): p. 1-14.
40. Dimri, G.P., et al., A Biomarker That Identifies Senescent Human-Cells in Culture and in Aging Skin in-Vivo. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(20): p. 9363-9367.
41. Gonos, E.S., et al., Cloning and identification of genes that associate with mammalian replicative senescence. Experimental Cell Research, 1998. 240(1): p. 66-74.
42. Gonos, E.S., Expression of the growth arrest specific genes in rat embryonic fibroblasts undergoing senescence. Stress of Life, 1998. 851: p. 466-469.
43. Kumazaki, T., et al., Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp Cell Res, 1991. 195(1): p. 13-9.
44. Dumont, P., et al., Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radical Biology and Medicine, 2000. 28(3): p. 361-373.
45. Choi, H.S., et al., Age-Dependent Decrease in the Heat-Inducible DNA Sequence-Specific Binding-Activity in Human-Diploid Fibroblasts. Journal of Biological Chemistry, 1990. 265(29): p. 18005-18011.
46. Bonelli, M.A., et al., Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro. Experimental Cell Research, 1999. 252(1): p. 20-32.
47. Doljanski, F., The sculpturing role of fibroblast-like cells in morphogenesis. Perspectives in Biology and Medicine, 2004. 47(3): p. 339-356.
48. Rice, R.M., et al., Biocompatibility testing of polymers: in vitro studies with in vivo correlation. J Biomed Mater Res, 1978. 12(1): p. 43-54.
49. Lahann, J., M. Yoshida, and K.H. Roh, Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomaterials, 2007. 28(15): p. 2446-2456.
50. Westin, E.R., et al., Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell, 2007. 6(3): p. 383-94.
51. de Haan, G. and J.S.G. Yeoh, Fibroblast growth factors as regulators of stem cell self-renewal and aging. Mechanisms of Ageing and Development, 2007. 128(1): p. 17-24.
52. Ishikawa, F., Cellular senescence as a stress response. Cornea, 2006. 25(10): p. S3-S6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31518-
dc.description.abstract前言: 隨著全球人口老化的趨勢,如何抗老化就變成是一個非常重要的課題;被譽為青春之鑰的生長因子就變成大家爭相研究的對象。但至今尚未有文獻指出,將人類纖維母細胞長期連續的施予生長因子對於細胞老化上的影響。因此,本研究的主要目標為觀察不同生長因子長期培養對於細胞老化的影響。
材料與方法:表皮生長因子和人類纖維母細胞生長因子作為實驗的生長因子。利用人類真皮纖維母細胞作為實驗細胞,培養於不同的生長因子中,建立細胞長期之生長曲線與 SA-β-galactosidase酵素活性等老化相關指標,最後進行和老化相關的基因分析。
結果:表皮生長因子(EGF)的實驗組中,在短天期由生長曲線觀察得知細胞數量沒有明顯差異代表細胞增生能力沒有增加,但長天期後生長曲線、細胞型態、Senescence-associated ß-galactosidase活性和老化相關基因表現均產生明顯類似於老化的型態。纖維母細胞生長因子(bFGF)實驗組中,在經過較長天期後由生長曲線觀察得知細胞數量有明顯差異代表胞增生能力增加,在繼續培養下去長曲線、細胞型態、Senescence-associated ß-galactosidase活性和老化相關基因表現均產生明顯類似於老化的型態。
結論:加表皮生長因子(EGF)的實驗組中,表皮生長因子(EGF)不利於人類纖維母細胞生長,就像是一種壓力提早加速細胞老化與凋亡。另外在纖維母細胞生長因子(bFGF)實驗組中,在實驗早期會增加細胞proliferation,但正常體細胞端粒有一定的長度,纖維母細胞生長因子(bFGF)會使細胞複製的次數比較多而提早造成複製性老化。
zh_TW
dc.description.abstractIntroduction: The aging is a very important issue for human with the global trend of an aging population. Therefore, the youth of the key growth factor was become study object nowadays .Hence, the main objective was developing long-term effects of different growth factors for cell aging in this study.
Materials and methods: Human epidermal growth factor and fibroblast growth factor as a test of the growth factor. Primary skin dermal fibroblasts were cultured on two growth factor to establish senescence correlation index, such as growth curves and SA-β-galactosidase activity. Finally, the senescence associated gene analysis were carried out.
Results:Epidermal growth factor (EGF) was observed no significant difference from the P.D curve in the short-term period. In the long-term period, the P.D curve, cell morphology, Senescence-associated ß-galactosidase activity and aging-related gene expression were significantly similar to the aging of the type produced. In the experimental group of plus Fibroblast growth factor (bFGF), the P.D curves were observed after a long -term period that are significant differences in the number of cells representative of the ability to increase cell proliferation. And continuing the curve, the cell morphology, Senescence-associated ß-galactosidase activity and aging-related gene expression were significantly similar to the aging of the type produced.
Conclusion: According to the result of the sample containing Epidermal growth factor, Epidermal growth factor may not be able to enhance the growth of Fibroblast. In the Epidermal growth factor containing specimen, Epidermal growth factor may become a stress which induces the senescence and apoptosis of cell. In addition, the result of the sample containing Fibroblast growth factor shows increase of cell proliferation in early stage. (Generally, normal telomere has fixed length.) Fibroblast growth factor could increase the proliferation times of cell and therefore approach replicative senescence earlier than usual.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:14:08Z (GMT). No. of bitstreams: 1
ntu-100-R98548034-1.pdf: 1156361 bytes, checksum: 22b0763555a48fde2fbd43c0ea4cc826 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖表 VIII
第一章 序論 1
研究動機 1
第二章 文獻回顧 1
2.1 自由基學說 (Free Radical Theory) 1
2.2 染色體終端理論(Telomere Theory) 2
2.3 端粒酶(Telomerase) 3
2.4 前驅性老化(Stress-induced premature senescence) 4
2.5 生長因子(Growth Factor) 4
2.5-1 表皮生長因子(Epidermal Growth Factor) 5
2.5-2 纖維母細胞生長因子(Fibroblast Growth Factor) 6
2.6 老化的表徵(Senescence biomarker) 7
2.7 纖維母細胞(Fibroblast) 8
第三章 實驗目的 9
第四章 材料與方法 9
4.1 實驗方法 9
4.1-1 初代細胞培養(Primary Cell Culture) 9
4.1-2 細胞培養與細胞計數(Cell culture & Cell count) 10
4.1-3 免疫染色(Immunocytochemically stain) 10
4.1-4 生長曲線(Population doubling curve) 11
4.1-5 老化標的染色(SA-β-galactosidase enzyme test) 11
4.1-6 細胞週期(Cell cycle test) 12
4.1-7 細胞增生(BrdU Cell Proliferation) 12
4.1-8 蛋白質分析 西方點墨法(Western blot) 13
4.2 藥品配置與濃度 15
4.2-1 實驗藥品 15
4.2-2 Kit 16
4.2-3 Antibody 16
4.2-4 實驗儀器 17
4.3 試劑配製 18
4.3-1 磷酸緩衝溶液(phosphate buffer solution,PBS) 18
4.3-2 DMEM培養液 ( Dulbecco’s Modified Eagle Medium) 18
4.3-3 X-gal Stoke 19
4.3-4 SA-β-gal染色緩衝液 19
4.3-5 Flow propidium iodide 染色 19
4.3-6 1X RIPA buffer 19
4.3-7 Western Separating gel 20
4.3-8 Western Stacking gel 21
第五章 實驗 22
5.1 實驗流程 22
5.2 試驗設計 23
第六章 結果與討論 24
6.1 初代細胞培養 24
6.2 生長曲線(Population doubling) 24
6.3 細胞型態(cell shape) 25
6.4 Senescence-associated ß-galactosidase酵素的染色與定量 26
6.5 細胞週期(cell cycle) 27
6.6 老化相關基因表現 29
6.7 綜合討論 30
第七章 結論 31
參考文獻 46

圖表
圖一:初代細胞培養 32
圖二:初代纖維母細胞免疫染色 33
圖三:長期培養於表皮生長因子(EGF)中的生長曲線 34
圖四:長期培養於纖維母細胞生長因子(bFGF)中的生長曲線 35
圖五:長期培養於表皮生長因子(EGF)中的細胞型態 36
圖六:長期培養於纖維母細胞生長因子(bFGF)中的細胞型態 37
圖七:長期培養於表皮生長因子(EGF)中β-galactosidase染色照片 38
圖八:長期培養於表皮生長因子(EGF)中β-galactosidase染色定量 39
圖九:長期培養於纖維母細胞生長因子(bFGF)中β-galactosidase染色照片 40
圖十:長期培養於纖維母細胞生長因子(bFGF)中β-galactosidase染色定量 41
圖十一:長期培養於纖維母細胞生長因子(bFGF)和表皮生長因子(EGF)中的Cell cycle 43
圖十二:更換培養盤組的基因表現 44
dc.language.isozh-TW
dc.subject染色體終端理論zh_TW
dc.subject細胞老化zh_TW
dc.subject纖維母細胞生長因子zh_TW
dc.subject表皮生長因子zh_TW
dc.subject人類纖維母細胞zh_TW
dc.subjectcell agingen
dc.subjectfibroblast growth factoren
dc.subjectepidermal growth factoren
dc.subjectHuman fibroblastsen
dc.subjecttelomere theoryen
dc.title人類纖維母細胞於不同生長因子中所引發之類似老化之表徵zh_TW
dc.titleThe effect of growth factor on the induction of senescence-like phenotype of human dermal fibroblasten
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor婁培人(Pei-Jen Lou, M.D,Ph.D)
dc.contributor.oralexamcommittee胡威文(wei-wen hu)
dc.subject.keyword人類纖維母細胞,表皮生長因子,纖維母細胞生長因子,細胞老化,染色體終端理論,zh_TW
dc.subject.keywordHuman fibroblasts,epidermal growth factor,fibroblast growth factor,cell aging,telomere theory,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2011-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved