請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31486
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁(fang-jen Lee) | |
dc.contributor.author | Li-Ting Jang | en |
dc.contributor.author | 詹琍婷 | zh_TW |
dc.date.accessioned | 2021-06-13T03:13:39Z | - |
dc.date.available | 2008-09-18 | |
dc.date.copyright | 2006-09-18 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-08-14 | |
dc.identifier.citation | Adam, S.A., Nakagawa, T., Swanson, M.S., Woodruff, T.K., and Dreyfuss, G. (1986). mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6, 2932-2943.
Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P. (1999). The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev 13, 2148-2158. Anderson, P., and Kedersha, N. (2002). Stressful initiations. J Cell Sci 115, 3227-3234. Antic, D., and Keene, J.D. (1998). Messenger ribonucleoprotein complexes containing human ELAV proteins: interactions with cytoskeleton and translational apparatus. J Cell Sci 111 ( Pt 2), 183-197. Ashe, M.P., De Long, S.K., and Sachs, A.B. (2000). Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11, 833-848. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274. Bandziulis, R.J., Swanson, M.S., and Dreyfuss, G. (1989). RNA-binding proteins as developmental regulators. Genes Dev 3, 431-437. Beck, A.R., Miller, I.J., Anderson, P., and Streuli, M. (1998). RNA-binding protein TIAR is essential for primordial germ cell development. Proc Natl Acad Sci U S A 95, 2331-2336. Bell, A.W., Ward, M.A., Blackstock, W.P., Freeman, H.N., Choudhary, J.S., Lewis, A.P., Chotai, D., Fazel, A., Gushue, J.N., Paiement, J., Palcy, S., Chevet, E., Lafreniere-Roula, M., Solari, R., Thomas, D.Y., Rowley, A., and Bergeron, J.J. (2001). Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276, 5152-5165. Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S.M., Singer, R.H., and Long, R.M. (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell 2, 437-445. Bidlingmaier, S., and Snyder, M. (2002). Large-scale identification of genes important for apical growth in Saccharomyces cerevisiae by directed allele replacement technology (DART) screening. Funct Integr Genomics 1, 345-356. Boeck, R., Tarun, S., Jr., Rieger, M., Deardorff, J.A., Muller-Auer, S., and Sachs, A.B. (1996). The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J Biol Chem 271, 432-438. Bourbon, H.M., Lapeyre, B., and Amalric, F. (1988). Structure of the mouse nucleolin gene. The complete sequence reveals that each RNA binding domain is encoded by two independent exons. J Mol Biol 200, 627-638. Bruhn, L., Hwang-Shum, J.J., and Sprague, G.F., Jr. (1992). The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccharomyces cerevisiae, are sufficient for DNA binding, transcription activation, and interaction with alpha 1. Mol Cell Biol 12, 3563-3572. Burd, C.G., and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615-621. Buu, L.M., Jang, L.T., and Lee, F.J. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279, 453-462. Calzada, A., Sanchez, M., Sanchez, E., and Bueno, A. (2000). The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem 275, 9734-9741. Caponigro, G., and Parker, R. (1996). Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60, 233-249. Chun, K.T., and Goebl, M.G. (1996). The identification of transposon-tagged mutations in essential genes that affect cell morphology in Saccharomyces cerevisiae. Genetics 142, 39-50. Chun, K.T., Mathias, N., and Goebl, M.G. (1996). Ubiquitin-dependent proteolysis and cell cycle control in yeast. Prog Cell Cycle Res 2, 115-127. Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861-890. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A., and Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. Rna 7, 1717-1727. Cougot, N., Babajko, S., and Seraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40. Courey, A.J., and Tjian, R. (1988). Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887-898. Cowles, C.R., Snyder, W.B., Burd, C.G., and Emr, S.D. (1997). Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. Embo J 16, 2769-2782. Daugeron, M.C., Mauxion, F., and Seraphin, B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res 29, 2448-2455. De Sampaio, G., Bourdineaud, J.P., and Lauquin, G.J. (1999). A constitutive role for GPI anchors in Saccharomyces cerevisiae: cell wall targeting. Mol Microbiol 34, 247-256. DeAngelo, D.J., DeFalco, J., Rybacki, L., and Childs, G. (1995). The embryonic enhancer-binding protein SSAP contains a novel DNA-binding domain which has homology to several RNA-binding proteins. Mol Cell Biol 15, 1254-1264. Deutschbauer, A.M., Williams, R.M., Chu, A.M., and Davis, R.W. (2002). Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99, 15530-15535. Dielbandhoesing, S.K., Zhang, H., Caro, L.H., van der Vaart, J.M., Klis, F.M., Verrips, C.T., and Brul, S. (1998). Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl Environ Microbiol 64, 4047-4052. Donaldson, J.G., and Honda, A. (2005). Localization and function of Arf family GTPases. Biochem Soc Trans 33, 639-642. Dunand-Sauthier, I., Walker, C., Wilkinson, C., Gordon, C., Crane, R., Norbury, C., and Humphrey, T. (2002). Sum1, a component of the fission yeast eIF3 translation initiation complex, is rapidly relocalized during environmental stress and interacts with components of the 26S proteasome. Mol Biol Cell 13, 1626-1640. Duttagupta, R., Tian, B., Wilusz, C.J., Khounh, D.T., Soteropoulos, P., Ouyang, M., Dougherty, J.P., and Peltz, S.W. (2005). Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol Cell Biol 25, 5499-5513. Ekwall, K., Kermorgant, M., Dujardin, G., Groudinsky, O., and Slonimski, P.P. (1992). The NAM8 gene in Saccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed. Mol Gen Genet 233, 136-144. Feldman, R.M., Correll, C.C., Kaplan, K.B., and Deshaies, R.J. (1997). A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221-230. Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., Burke, D.J., Ross, M.M., Shabanowitz, J., Hunt, D.F., and White, F.M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20, 301-305. Fillman, C., and Lykke-Andersen, J. (2005). RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol 17, 326-331. Finger, F.P., Hughes, T.E., and Novick, P. (1998). Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559-571. Finger, F.P., and Novick, P. (1998). Spatial regulation of exocytosis: lessons from yeast. J Cell Biol 142, 609-612. Fischer, N., and Weis, K. (2002). The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. Embo J 21, 2788-2797. Fribourg, S., Gatfield, D., Izaurralde, E., and Conti, E. (2003). A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol 10, 433-439. Goldstein, A.L., and McCusker, J.H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553. Golemis, E.A., and Khazak, V. (1997). Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol Biol 63, 197-218. Hamada, K., Terashima, H., Arisawa, M., Yabuki, N., and Kitada, K. (1999). Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181, 3886-3889. Han, A.P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., Fleming, M., Leboulch, P., Orkin, S.H., and Chen, J.J. (2001). Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. Embo J 20, 6909-6918. Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6, 1099-1108. Herrick, D., Parker, R., and Jacobson, A. (1990). Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10, 2269-2284. Heyer, W.D., Johnson, A.W., Reinhart, U., and Kolodner, R.D. (1995). Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol Cell Biol 15, 2728-2736. Hill, C.S., Packman, L.C., and Thomas, J.O. (1990). Phosphorylation at clustered -Ser-Pro-X-Lys/Arg- motifs in sperm-specific histones H1 and H2B. Embo J 9, 805-813. Hilleren, P., and Parker, R. (1999). Mechanisms of mRNA surveillance in eukaryotes. Annu Rev Genet 33, 229-260. Hilt, W., and Wolf, D.H. (1996). Proteasomes: destruction as a programme. Trends Biochem Sci 21, 96-102. Huang, C.F., Buu, L.M., Yu, W.L., and Lee, F.J. (1999). Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae. J Biol Chem 274, 3819-3827. Huang, C.F., Liu, Y.W., Tung, L., Lin, C.H., and Lee, F.J. (2003). Role for Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol Biol Cell 14, 3834-3847. Hudspeth, M.E., Ainley, W.M., Shumard, D.S., Butow, R.A., and Grossman, L.I. (1982). Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell 30, 617-626. Ingelfinger, D., Arndt-Jovin, D.J., Luhrmann, R., and Achsel, T. (2002). The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. Rna 8, 1489-1501. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163-168. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98, 4569-4574. Iwamoto, M.A., Fairclough, S.R., Rudge, S.A., and Engebrecht, J. (2005). Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. Eukaryot Cell 4, 536-544. Jacobson, A., and Peltz, S.W. (1996). Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65, 693-739. Kaiser, P., Moncollin, V., Clarke, D.J., Watson, M.H., Bertolaet, B.L., Reed, S.I., and Bailly, E. (1999). Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets. Genes Dev 13, 1190-1202. Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J., and Anderson, P. (2002). Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 13, 195-210. Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E., and Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151, 1257-1268. Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fitzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169, 871-884. Keller, P., and Simons, K. (1997). Post-Golgi biosynthetic trafficking. J Cell Sci 110 ( Pt 24), 3001-3009. Kuma, K., Iwabe, N., Kawanishi, Y., and Miyata, T. (1990). RNA-binding protein-related sequence in a malaria antigen, clustered-asparagine-rich protein. FEBS Lett 260, 67-69. Lee, F.J., Huang, C.F., Yu, W.L., Buu, L.M., Lin, C.Y., Huang, M.C., Moss, J., and Vaughan, M. (1997). Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 272, 30998-31005. Lee, F.J., Stevens, L.A., Kao, Y.L., Moss, J., and Vaughan, M. (1994). Characterization of a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae. J Biol Chem 269, 20931-20937. Lee, W.C., Zabetakis, D., and Melese, T. (1992). NSR1 is required for pre-rRNA processing and for the proper maintenance of steady-state levels of ribosomal subunits. Mol Cell Biol 12, 3865-3871. Lew, D.J., and Reed, S.I. (1993). Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120, 1305-1320. Lew, D.J., and S, I.R. (1992). A proliferation of cyclins. Trends Cell Biol 2, 77-81. Li, B., and Warner, J.R. (1996). Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J Biol Chem 271, 16813-16819. Liu, H., Rodgers, N.D., Jiao, X., and Kiledjian, M. (2002). The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. Embo J 21, 4699-4708. Liu, Y.W., Huang, C.F., Huang, K.B., and Lee, F.J. (2005). Role for Gcs1p in Regulation of Arl1p at Trans-Golgi Compartments. Mol Biol Cell. Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961. Lu, L., Han, A.P., and Chen, J.J. (2001). Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 21, 7971-7980. Luo, Z., and Gallwitz, D. (2003). Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. J Biol Chem 278, 791-799. Lykke-Andersen, J. (2002). Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22, 8114-8121. Mathias, N., Johnson, S.L., Winey, M., Adams, A.E., Goetsch, L., Pringle, J.R., Byers, B., and Goebl, M.G. (1996). Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol 16, 6634-6643. Matunis, M.J., Matunis, E.L., and Dreyfuss, G. (1993). PUB1: a major yeast poly(A)+ RNA-binding protein. Mol Cell Biol 13, 6114-6123. Mazan-Mamczarz, K., Lal, A., Martindale, J.L., Kawai, T., and Gorospe, M. (2006). Translational repression by RNA-binding protein TIAR. Mol Cell Biol 26, 2716-2727. Mazzoni, C., Zarov, P., Rambourg, A., and Mann, C. (1993). The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J Cell Biol 123, 1821-1833. McCarthy, J.E. (1998). Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62, 1492-1553. Messias, A.C., and Sattler, M. (2004). Structural basis of single-stranded RNA recognition. Acc Chem Res 37, 279-287. Meyer, S., Temme, C., and Wahle, E. (2004). Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39, 197-216. Miesfeld, R., Rusconi, S., Godowski, P.J., Maler, B.A., Okret, S., Wikstrom, A.C., Gustafsson, J.A., and Yamamoto, K.R. (1986). Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46, 389-399. Minvielle-Sebastia, L., Winsor, B., Bonneaud, N., and Lacroute, F. (1991). Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol 11, 3075-3087. Moore, M.J. (2005). From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518. Nakashima-Kamimura, N., Asoh, S., Ishibashi, Y., Mukai, Y., Shidara, Y., Oda, H., Munakata, K., Goto, Y., and Ohta, S. (2005). MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118, 5357-5367. Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-127. Passmore, S., Maine, G.T., Elble, R., Christ, C., and Tye, B.K. (1988). Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J Mol Biol 204, 593-606. Pearson, R.B., and Kemp, B.E. (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200, 62-81. Pfeifer, K., Kim, K.S., Kogan, S., and Guarente, L. (1989). Functional dissection and sequence of yeast HAP1 activator. Cell 56, 291-301. Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533. Pinkham, J.L., Olesen, J.T., and Guarente, L.P. (1987). Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol 7, 578-585. Piper, R.C., Bryant, N.J., and Stevens, T.H. (1997). The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138, 531-545. Pirrotta, V., Manet, E., Hardon, E., Bickel, S.E., and Benson, M. (1987). Structure and sequence of the Drosophila zeste gene. Embo J 6, 791-799. Pringle, J.R., Preston, R.A., Adams, A.E., Stearns, T., Drubin, D.G., Haarer, B.K., and Jones, E.W. (1989). Fluorescence microscopy methods for yeast. Methods Cell Biol 31, 357-435. Pruyne, D., and Bretscher, A. (2000). Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113 ( Pt 3), 365-375. Puig, O., Gottschalk, A., Fabrizio, P., and Seraphin, B. (1999). Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection. Genes Dev 13, 569-580. Raijmakers, R., Egberts, W.V., van Venrooij, W.J., and Pruijn, G.J. (2003). The association of the human PM/Scl-75 autoantigen with the exosome is dependent on a newly identified N terminus. J Biol Chem 278, 30698-30704. Reed, S.I., and Wittenberg, C. (1990). Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87, 5697-5701. Rehling, P., Darsow, T., Katzmann, D.J., and Emr, S.D. (1999). Formation of AP-3 transport intermediates requires Vps41 function. Nat Cell Biol 1, 346-353. Reid, B.J., and Hartwell, L.H. (1977). Regulation of mating in the cell cycle of Saccharomyces cerevisiae. J Cell Biol 75, 355-365. Robinow, S., Campos, A.R., Yao, K.M., and White, K. (1988). The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science 242, 1570-1572. Rodriguez-Pena, J.M., Cid, V.J., Arroyo, J., and Nombela, C. (2000). A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20, 3245-3255. Rodriguez-Pena, J.M., Rodriguez, C., Alvarez, A., Nombela, C., and Arroyo, J. (2002). Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115, 2549-2558. Romisch, K., Webb, J., Lingelbach, K., Gausepohl, H., and Dobberstein, B. (1990). The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J Cell Biol 111, 1793-1802. Rua, D., Tobe, B.T., and Kron, S.J. (2001). Cell cycle control of yeast filamentous growth. Curr Opin Microbiol 4, 720-727. Sachs, A.B., Bond, M.W., and Kornberg, R.D. (1986). A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45, 827-835. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY Samson, M.L. (1998). Evidence for 3' untranslated region-dependent autoregulation of the Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV. Genetics 150, 723-733. Schwob, E., Bohm, T., Mendenhall, M.D., and Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233-244. Seaman, M.N., McCaffery, J.M., and Emr, S.D. (1998). A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142, 665-681. Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Methods in Yeast Genetics Cold Spring Harbor Laboratory, Cold Spring Harbor, NY Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808. Sheu, Y.J., Barral, Y., and Snyder, M. (2000). Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol Cell Biol 20, 5235-5247. Shi, H., and Xu, R.M. (2003). Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev 17, 971-976. Singer, T., Haefner, S., Hoffmann, M., Fischer, M., Ilyina, J., and Hilt, W. (2003). Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Genetics 164, 1305-1321. Siomi, H., Matunis, M.J., Michael, W.M., and Dreyfuss, G. (1993). The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21, 1193-1198. Stahl, G., Salem, S.N., Chen, L., Zhao, B., and Farabaugh, P.J. (2004). Translational accuracy during exponential, postdiauxic, and stationary growth phases in Saccharomyces cerevisiae. Eukaryot Cell 3, 331-338. Stearns, T., Willingham, M.C., Botstein, D., and Kahn, R.A. (1990). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci U S A 87, 1238-1242. Stefl, R., Skrisovska, L., and Allain, F.H. (2005). RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6, 33-38. Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A.B., and Nasmyth, K. (1991). The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65, 145-161. Suzuki, Y., Nogi, Y., Abe, A., and Fukasawa, T. (1988). GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol 8, 4991-4999. Taupin, J.L., Tian, Q., Kedersha, N., Robertson, M., and Anderson, P. (1995). The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc Natl Acad Sci U S A 92, 1629-1633. Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. Rna 11, 371-382. TerBush, D.R., and Novick, P. (1995). Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 130, 299-312. Tian, Q., Streuli, M., Saito, H., Schlossman, S.F., and Anderson, P. (1991). A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67, 629-639. Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D.S., Haynes, J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J.N., Lu, H., Menard, P., Munyana, C., Parsons, A.B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.M., Shapiro, J., Sheikh, B., Suter, B., Wong, S.L., Zhang, L.V., Zhu, H., Burd, C.G., Munro, S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F.P., Brown, G.W., Andrews, B., Bussey, H., and Boone, C. (2004). Global mapping of the yeast genetic interaction network. Science 303, 808-813. Tseng-Rogenski, S.S., Chong, J.L., Thomas, C.B., Enomoto, S., Berman, J., and Chang, T.H. (2003). Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res 31, 4995-5002. Tucker, M., and Parker, R. (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69, 571-595. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D., and Parker, R. (2002). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. Embo J 21, 1427-1436. Tucker, M., Valencia-Sanchez, M.A., Staples, R.R., Chen, J., Denis, C.L., and Parker, R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386. Uesono, Y., and Toh, E.A. (2002). Transient inhibition of translation initiation by osmotic stress. J Biol Chem 277, 13848-13855. Vida, T.A., and Emr, S.D. (1995). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128, 779-792. Wahlgren, M., Aslund, L., Franzen, L., Sundvall, M., Wahlin, B., Berzins, K., McNicol, L.A., Bjorkman, A., Wigzell, H., Perlmann, P., and et al. (1986). A Plasmodium falciparum antigen containing clusters of asparagine residues. Proc Natl Acad Sci U S A 83, 2677-2681. Wang, Y., Liu, C.L., Storey, J.D., Tibshirani, R.J., Herschlag, D., and Brown, P.O. (2002). Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A 99, 5860-5865. Wharton, K.A., Yedvobnick, B., Finnerty, V.G., and Artavanis-Tsakonas, S. (1985). opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell 40, 55-62. Wickens, M., and Goldstrohm, A. (2003). Molecular biology. A place to die, a place to sleep. Science 300, 753-755. Wild, K., Halic, M., Sinning, I., and Beckmann, R. (2004). SRP meets the ribosome. Nat Struct Mol Biol 11, 1049-1053. Willems, A.R., Lanker, S., Patton, E.E., Craig, K.L., Nason, T.F., Mathias, N., Kobayashi, R., Wittenberg, C., and Tyers, M. (1996). Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453-463. Williams, B.R. (2001). Signal integration via PKR. Sci STKE 2001, RE2. Wilusz, C.J., Wormington, M., and Peltz, S.W. (2001). The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2, 237-246. Wu, C.C., Taylor, R.S., Lane, D.R., Ladinsky, M.S., Weisz, J.A., and Howell, K.E. (2000). GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1, 963-975. Xiong, Y., and Beach, D. (1991). Population explosion in the cyclin family. Curr Biol 1, 362-364. Yahara, N., Ueda, T., Sato, K., and Nakano, A. (2001). Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 12, 221-238. Zopf, D., Bernstein, H.D., Johnson, A.E., and Walter, P. (1990). The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. Embo J 9, 4511-4517. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31486 | - |
dc.description.abstract | 壹、酵母菌核醣核酸結合蛋白Rbp1p之功能性探討
在酵母菌中,一個可以與核醣核酸結合的蛋白質Rbp1p最初被鑑定為一個負生長調控者。Rbp1p經由加速一個可以轉譯做出粒線體蛋白質Por1p的核醣核酸的降解速度來減少POR1核醣核酸的量。最近,在細胞中的一種細胞質聚集顆粒已經被確定了,這種顆粒被稱為P-bodies,包含有調控核醣核酸降解的蛋白質和核醣核酸本身,核醣核酸的降解也會在此處發生。這裡,我們顯示Rbp1p可以坐落在P-bodies。 Rbp1p的氮端、第一個可以與核醣核酸結合的序列和碳端皆對於Rbp1p坐落到P-bodies很重要。我們也證明氮端和第一個可以與核醣核酸結合的序列對於Rbp1p坐落到P-bodies是必要的,但是不足夠的。Rbp1p的碳端對於自我的結合作用扮演著重要角色。Dhh1p是可以坐落到P-bodies的。我們結果顯示在細胞內Rbp1p和Dhh1p能交互作用,但是這交互作用並不影響Rbp1p是否可以坐落到P-bodies。利用螢光染色來揭示Rbp1p在以下兩種突變株rbp1Δ xrn1Δ ccr4Δ和rbp1Δ xrn1Δ pan2Δ 的位置,結果顯示Rbp1p在xrn1剔除細胞株中坐落到P-bodies是不需要核醣核酸進行去線嘌呤化。我們也顯示Rbp1p在xrn1剔除細胞株中坐落到P-bodies是不需要POR1核醣核酸。我們觀察在不同的環境壓力下,P-bodies和Rbp1p之間的關係。我們的數據顯示在葡萄糖剝奪,滲透壓力和生長階段晚期的幾種壓力之下,Rbp1p 和Dhh1p會坐落在相同的位置。由於細胞經由cycloheximide的處理,Dhh1p 和Dcp2p會從P-bodies脫離,但是Rbp1p在細胞的分佈並沒有明顯的差別。雖然Rbp1p和P-bodies有著密切的關係,但是,Rbp1p對於P-bodies形成並不重要。我們猜測Rbp1p是構成P-bodies的種子之一,只不過並非是絕對需要的也不是唯一的。Rbp1p仍然可以出現在不包含核醣核酸的P-bodies。在我們的蛋白質雙向雜交研究過程中,有17種可以與Rbp1p相互作用的蛋白質被鑑定。 蛋白質與蛋白質相互作用對於執行各種各樣的生物機能扮演了決定性的角色。連接這些蛋白質的相互作用,將能對於Rbp1p的功能性有更深層的瞭解。 貳、酵母菌高基氏體結合蛋白Vps74p之功能性探討 在酵母菌的G1短期內發生頂端發芽生長,此時細胞膜和細胞壁沉積在正在芽化生長的頂端。Vps74p (YDR372C的產物)最近被報告可以改變cdc34-2突變株停止在頂端發展階段裡時被拉長的小芽形態。在這裡,我們顯示Vps74p在第十九號絲胺酸上的磷酸化是依靠生長階段的模式。而且Vps74p被磷酸化是需要cdc28p的存在。丙胺酸和天門冬胺酸分別代替第十九號的絲胺酸可以直接影響cdc34-2突變株被拉長的小芽形態。丙胺酸的取代可以直接終止Vps74p在頂端發展上的職能。相反的,天門冬胺酸的取代可以直接刺激細胞形成拉長的小芽。Vps74p坐落在高基氏體是不需倚賴氮端被磷酸化,但是需要碳端的胺基酸序列。我們也發現Vps74p會影響Gas1p送往細胞膜的的分佈,另外,剔除Vps74p碳端的胺基酸序列會影響細胞壁的完整,但氮端胺基酸序列的剔除並不會影響細胞壁的完整性。總而言之,我們推斷第十九號絲胺酸的磷酸化可以影響Vps74p在小芽頂端生長的調節功能,但並不是參與在細胞壁的完整性方面。 | zh_TW |
dc.description.abstract | Section I. Functional Characterization of RNA binding protein Rbp1p in Saccharomyces cerevisiae
The Saccharomyces cerevisiae RNA-binding protein Rbp1p was initially identified as a negative growth regulator. Overexpression of Rbp1p can decrease the level of mitochondrial Por1p mRNA by enhancing its degradation. Recently, one kind of cytoplasmic foci had been defined, referred to processing bodies (P-bodies), wherein mRNA decay factors are concentrated and where mRNA decay can occur. Here, we show that Rbp1p is found in the mRNA processing bodies. Rbp1p localizes to P-bodies in an xrn1 strain and the N-terminus, C-terminus, and RRM1 domain are involved in this recruitment. We also demonstrate that the N-terminal and RRM1 domains of Rbp1p are necessary but not sufficient for its localization in P bodies. The C-terminus of Rbp1p is involved in oligomers formation. Dhh1p can be localized to P-bodies, and we show that in vivo Rbp1p interacts with Dhh1p. However, this interaction does not affect the recruitment of Rbp1p to P-bodies. Immunostaining also reveal that HA-Rbp1p located to P-bodies in rbp1Δxrn1Δccr4Δ and rbp1Δxrn1Δpan2Δ mutants, suggest that proteins involved in deadenylation are not required for the recruitment of Rbp1p to P-bodies. We also demonstrate that Rbp1p is not required for localizing POR1 mRNA to P bodies in an xrn1Δ strain. We have addressed how the relationship between P-bodies and Rbp1p responds to stress. Our data show that Rbp1p colocalizes with Dhh1p under several stress conditions including glucose deprivation, osmotic stress, and late growth stage. In response to cycloheximide treatment, Dhh1p and Dcp2p are dissociated from P-bodies, but there are no significant differences in Rbp1p localization. Despite the close relationship between Rbp1p and P-bodies, Rbp1p is not essential to P-bodies formation. Based on our data, we propose that Rbp1p is a redundant protein of P-body seed and remains in such foci even when mRNAs are no longer available. In our study, seventeen full-length Rbp1p interacting proteins have identified. Considering that protein-protein interactions play crucial roles in the execution of various biological functions, cumulative connection of these binary interactions would contribute considerably to the functional interpretation of Rbp1p. Section II. Functional Characterization of Golgi associated protein Vps74p in Saccharomyces cerevisiae In Saccharomyces cerevisiae, apical bud growth occurs for a brief period in G1 when the deposition of membrane and cell wall is restricted to the tip of the growing bud. Vps74p (product of YDR372C) was recently reported to alter the elongated bud morphology of cdc34-2 cells arrested in the apical growth phase. Here, we show that Vps74p is phosphorylated on serine-19 in a growth-phase-dependent manner. Cdc28 kinase is required for Vps74p phosphorylation. Both alanine and aspartate substitutions in serine-19 directly affect elongated bud morphology of cdc34-2 cells. The alanine substitution abolished Vps74p functional activity on apical growth. In contrast, the aspartate substitution stimulates cellular elongated buds formation. Localization of Vps74p at the Golgi is not dependent on the N-terminal phosphorylation, but on its C-terminal domain. Vps74p is involved in the transportation of GPI-anchored protein Gas1. In addition, deletion of C-terminus, but not N-terminus, of Vps74p affects cell wall integrity. Together, we infer that the distinct functional outcome from Ser-19 phosphorylation modulates Vps74p activity in apical growth, but not in cell wall integrity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:13:39Z (GMT). No. of bitstreams: 1 ntu-95-F88448002-1.pdf: 7392358 bytes, checksum: f1c482c61c69e7291c51c5abfc91514b (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 3 Section I: Functional characterization of Rbp1p 5 Introduction 6 Results 17 I Determinants of Rbp1p Localization on Specific Cytoplasmic mRNA-processing Foci, P-bodies 17 II To identify the localization of Rbp1p varies under different cellular condition 27 III To identify and characterize the structure and function of Rbp1p-interacting proteins 32 Discussion 37 Perspective 46 Section II: Functional characterization of Vps74p 48 Introduction 49 Results 53 Discussion 64 Materials and methods 67 Tables 78 Table 1 Yeast strains used in this thesis 78 Table 2. Primers used in this study 79 Table 3. A brief summary of plasmids used in this thesis 85 Table 4. Putative Rbp1p interacting proteins 86 Figures 87 Fig. 1. Rbp1p localizes to cytoplasmic foci similar to the P-bodies in an xrn1Δ mutant strain. 87 Fig. 2. Endogenous Rbp1p co-localizes with Dhh1p in the xrn1Δ mutant. 88 Fig. 3. N-terminus, C-terminus, and RRM1 domain of Rbp1p are involved in the recruitment of Rbp1p to P-bodies in an xrn1Δ mutant. 89 Fig. 4. Localization of Rbp1p and its mutants in an rbp1Δ mutant strain. 91 Fig. 5. Expression of Rbp1p recruits Rbp1p-dN, Rbp1p-rrm1, and Rbp1p-CT to P-bodies in an rbp1Δ/xrn1Δ mutant. 92 Fig. 6. Rbp1p interacts with itself and Rbp1p-dN in an RNA-independent manner. 93 Fig. 7. Rbp1p interacts with Dhh1p in an RNA-independent manner. 94 Fig. 8. Rbp1p interacts with Dhh1p in an rbp1Δ mutant in an RNA-independent manner in vivo. 95 Fig. 9. Xrn1p-GFP can be pulled with GST-Rbp1p in an rbp1Δ mutant in vivo. 96 Fig. 10. Dhh1p, Ccr4p and Pan2p are not required for the recruitment of Rbp1p to P-bodies in an xrn1Δ mutant. 97 Fig. 11. Sedimentation centrifugation analyses of GST-Rbp1p. 98 Fig. 12. RNA-binding ability of Rbp1p and its mutated or deleted mutants in vivo. 99 Fig. 13. Rbp1p is not required for the recruitment of POR1 mRNA to P-bodies in an xrn1Δ mutant. 100 Fig. 14. DsRed-Rbp1p is co-localized with Dhh1p-GFP in an rbp1Δ/xrn1Δ mutant. 102 Fig. 15. Growth phenotypes. 103 Fig. 16. Over-expression of HA-Rbp1p in either xrn1 or ccr4 mutant cells had no effect on the steady state level of POR1 mRNA. 104 Fig. 17. Xrn1p is involved in Rbp1p-mediated POR1 mRNA decay. 105 Fig. 18. The localization of endogenous Rbp1p, Dhh1p, and Dcp2p in response to the stage of cell growth. 106 Fig. 19. The co-localization of Rbp1p and Dhh1p increase with the stage of cell growth. 107 Fig. 20. Rbp1p co-localizes with Dhh1p under glucose deprivation. 108 Fig. 21. Rbp1p co-localizes with Dhh1p under osmotic stress. 109 Fig. 22. DsRed-Rbp1p does not co-localize with Dhh1p-GFP under H2O2-induced oxidative stress. 110 Fig. 23. Distribution of Rbp1p and Dhh1p in heat shock stress. 111 Fig. 24. Inhibition of translation elongation disrupts P-bodies but not granules containing Rbp1p. 112 Fig. 25. Inhibition of translation elongation could not dissociate Rbp1p from P-bodies in stationary phase. 113 Fig. 26. 2-D electrophoresis of GST-Rbp1p protein complexes. 114 Fig. 27. Immunoblot of the threonine phosphorylation GST-Rbp1p protein. 115 Fig. 28. 2D electrophoresis of GST-Rbp1p protein treated with alkaline phosphatase. 116 Fig. 29 Specific immunoreactivity and sensitivity of antibody against Hrp1p, Psp1p, Rpt2p, and Scj1p. 117 Fig. 30. Subcellular localization and subcellular distribution of Psp1p. 118 Fig. 31. Rbp1p localizes to P-bodies is not dependent on Psp1p and Rrp1p. 119 Fig. 32 Endogenous GFP-tagged Nrp1p and Pub1p can interact with the over-expressed GST-Rbp1p. 120 Fig. 33. Nrp1p partly co-localizes with Rbp1p. 121 Fig. 34. A small amount of Pub1p can locate to P-bodies in xrn1 mutant. 122 Fig. 35. Localization of Scj1p detected by indirect immunofluorescence and subcellular distribution of endogenous Scj1p-3HA. 123 Fig. 36. Subcellular localization and subcellular distribution of Hrp1p. 124 Fig. 37. Rbp1p interacts with Por1p in vivo. 125 Fig. 38. Subcellular distribution of endogenous Rpt2p. 126 Fig. 39. Rbp1p could be located to bud tip and daughter cell in sho1 mutant. 127 Fig. 40. These binary interactions were cumulative connections. 128 Fig. 41. Vps74p is a phospho-protein. 129 FIG 42. Phosphorylation of Vps74p does not regulated by cell cycle. 130 Fig. 43. Vps74p is phosphorylated in a growth-phase-dependent manner 131 Fig. 44. Expression of phosphorylated Vps74p is regulated by Cdc28p. 132 Fig. 45. Vps74 is critical for cells involved at least in apical projection between late G1 and before mitotic anaphase. 133 Fig. 46. Vps74p participates in apical growth. 134 Fig. 47. Phosphorylation of Ser-19 in Vps74p functions for apical growth. 135 Fig. 48. Determines of Vps74p localized to the Golgi apparatus. 136 Fig. 49. Subcellular distribution of Vps74p. 137 Fig. 50. Vps74p is not involved in known exocytosis and endocytosis. 138 Fig. 51. Vps74p is involved in transportation of GPI-anchored protein Gas1p. 139 Fig. 52. Vps74p is involved in the cell wall integrity. 140 Fig. 53. Vps74p is not involved in bud site selection. 141 Fig. 54. C-terminal GFP-fused Vps74p, Vps74-GFP appears diffusion in cytoplasm. 142 Fig. 55. Vps74p is not involved in the function of mitochondria. 143 Fig. 56. Arf1p facilitates elongated bud formation in cdc34-2 mutant. 144 References 145 | |
dc.language.iso | en | |
dc.title | 酵母菌核醣核酸結合蛋白Rbp1p及高基氏體結合蛋白Vps74p之功能特性探討 | zh_TW |
dc.title | Functional Characterization of RNA binding protein Rbp1p and Golgi associated protein Vps74p in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),鄭明媛,譚婉玉(Woan-Yuh Tarn),鄧述諄 | |
dc.subject.keyword | 酵母菌核醣核酸結合蛋白,核醣核酸的降解,高基氏體結合蛋白,頂端發芽生長, | zh_TW |
dc.subject.keyword | Saccharomyces cerevisiae RNA-binding protein,P-bodies,mRNA decay,Golgi associated protein,apical growth, | en |
dc.relation.page | 155 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 7.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。