Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫
dc.contributor.authorSzu-Ying Wuen
dc.contributor.author吳思穎zh_TW
dc.date.accessioned2021-06-13T03:13:19Z-
dc.date.available2007-09-18
dc.date.copyright2006-09-18
dc.date.issued2006
dc.date.submitted2006-08-23
dc.identifier.citationChapter 1
Begum BA, Biswas SK, Kim E, Hopke PK, Khaliquzzaman M. 2005. Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh. Journal Of The Air & Waste Management Association 55(2):227-240.
Bernstein JA, Alexis N, Barnes C, Bernstein IL, Bernstein JA, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB. 2004. Health effects of air pollution. Journal of Allergy and Clinical Immunology 114(5):1116-1123.
Buzcu B, Fraser MP. 2006. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment 40(13):2385-2400.
Cooper JA, Watson JG, Huntzicker JJ. 1984. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmospheric Environment 18:1347-1355.
Fruin SA, Winer AM, Rodes CE. 2004. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmospheric Environment 38(25):4123-4133.
Fujieda S, Diaz-Sanchez D, Saxon A. 1998. Combined nasal challenge with diesel exhaust particles and allergen induces in vivo IgE isotype switching. American Journal of Respiratory Cell and Molecular Biology 19(3):507-512.
Groves J, Cain JR. 2000. A survey of exposure to diesel engine exhaust emissions in the workplace. Annals of Occupational Hygiene 44(6):435-447.
Guo H, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH, Li YS. 2004. Source contributions to ambient VOCs and CO at a rural site in Eastern China. Atmospheric Environment 38(27):4551-4560.
Henry RC, Norris GA. 2002. EPA Unmix 2.3 user's guide.
Hopke PK. 1985. Receptor modeling in environmental chemistry. New York: Wiley. vii, 319 p. p.

Hopke PK. 1991. Receptor modeling for air quality management. Amsterdam ; New York New York, NY, USA: Elsevier ;Distributors in the United States and Canada, Elsevier Science Pub. Co. xi, 329 p. p.
Hopke PK. 2003. Recent developments in receptor modeling. Journal Of Chemometrics 17(5):255-265.
Hopke PK, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV and others. 2006. PM source apportionment and health effects: 1. Intercomparison of source apportionment results. Journal of Exposure Science and Environmental Epidemiology 16(3):275-286.
Jorquera H, Rappengluck B. 2004. Receptor modeling of ambient VOC at Santiago, Chile. Atmospheric Environment 38(25):4243-4263.
Juntto S, Paatero P. 1994. Analysis of daily Precipitation data by Positive Matrix Factorization. Environmetrics 5(2):127-144.
Kim E, Hopke P, Edgerton E. 2004a. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38(20):3349-3362.
Kim E, Hopke PK, Larson TV, Maykut NN, Lewtas J. 2004b. Factor analysis of Seattle fine particles. Aerosol Science And Technology 38(7):724-738.
Kim E, Hopke PK, Paatero P, Edgerton ES. 2003. Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. Atmospheric Environment 37(36):5009-5021.
Kim E, Hopke PK, Qin YJ. 2005. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. Journal of the Air & Waste Management Association 55(8):1190-1199.
Larson T, Gould T, Simpson C, Liu L, Claiborn C, Lewtas J. 2004. Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. Journal of The Air & Waste Management Association 54(9):1175-1187.
Larson TV, Covert DS, Kim E, Elleman R, Schreuder AB, Lumley T. 2006. Combining size distribution and chemical species measurements into a multivariate receptor model of PM2.5. Journal of Geophysical Research-Atmospheres 111(D10).
Latella A, Stani G, Cobelli L, Duane M, Junninen H, Astorga C, Larsen BR. 2005. Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. Journal of Chromatography A 1071(1-2):29-39.
Lee J, Gigliotti C, Offenberg J, Eisenreich S, Turpin B. 2004. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. ATMOSPHERIC ENVIRONMENT 38(35):5971-5981.
Liu W, Wang Y, Russell A, Edgerton E. 2005. Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources. Atmospheric Environment 39(25):4453-4470.
Maykut NN, Lewtas J, Kim E, Larson TV. 2003. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology 37(22):5135-5142.
Miller SL, Anderson MJ, Daly EP, Milford JB. 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment 36(22):3629-3641.
Nel AE, Diaz-Sanchez D, Ng D, Hiura T, Saxon A. 1998. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. Journal of Allergy and Clinical Immunology 102(4):539-554.
Nordenhall C, Pourazar J, Blomberg A, Levin JO, Sandstrom T, Adelroth E. 2000. Airway inflammation following exposure to diesel exhaust: a study of time kinetics using induced sputum. European Respiratory Journal 15(6):1046-1051.
Nordenhall C, Pourazar J, Ledin MC, Levin JO, Sandstrom T, Adelroth E. 2001. Diesel exhaust enhances airway responsiveness in asthmatic subjects. European Respiratory Journal 17(5):909-915.
Ogulei D, Hopke PK, Zhou LM, Paatero P, Park SS, Ondov J. 2005. Receptor modeling for multiple time resolved species: The Baltimore, supersite. Atmospheric Environment 39(20):3751-3762.

Paatero P. 1997. A weighted non-negative least squares algorithm for three-way 'PARAFAC' factor analysis. Chemometrics and Intelligent Laboratory Systems 38(2):223-242.
Paatero P. 1999. The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal Of Computational And Graphical Statistics 8(4):854-888.
Pereira PM, Saldiva PHN, Sakae RS, Bohm GM, Martins MA. 1995. Urban levels of air pollution increase lung responsiveness in rats. Environmental Research 69(2):96-101.
Polissar A, Hopke P, Poirot R. 2001. Atmospheric aerosol over Vermont: Chemical composition and sources. Environmental Science & Technology 35(23):4604-4621.
Pratt GC, Palmer K, Wu CY, Oliaei F, Hollerbach C, Fenske MJ. 2000. An assessment of air toxics in Minnesota. Environmental Health Perspectives 108(9):815-825.
Salvi SS, Nordenhall C, Blomberg A, Rudell B, Pourazar J, Kelly FJ, Wilson S, Sandstrom T, Holgate ST, Frew AJ. 2000. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. American Journal of Respiratory and Critical Care Medicine 161(2):550-557.
Sauvain JJ, Duc TV, Guillemin M. 2003. Exposure to carcinogenic polycyclic aromatic compounds and health risk assessment for diesel-exhaust exposed workers. International Archives of Occupational and Environmental Health 76(6):443-455.
Schauer JJ. 2003. Evaluation of elemental carbon as a marker for diesel particulate matter. Journal of Exposure Analysis and Environmental Epidemiology 13(6):443-453.
Song X, Polissar A, Hopke P. 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment 35(31):5277-5286.
Stenfors N, Nordenhall C, Salvi SS, Mudway I, Soderberg M, Blomberg A, Helleday R, Levin JO, Holgate ST, Kelly FJ and others. 2004. Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. European Respiratory Journal 23(1):82-86.
Tam BN, Neumann CM. 2004. A human health assessment of hazardous air pollutants in Portland, OR. Journal of Environmental Management 73(2):131-145.
Thurston GD, Spengler JD. 1985. A quantitat ive assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment 19:9-25.
USEPA. 1993. Clean Air Act 1990 Avaiable from: <http://www.epa.gov/oar/oaqps/peg_caa/pegcaain.html>.
USEPA. 2002. National-Scale Air Toxics Assessment for 1996 Available from: <http://www.epa.gov/ttn/atw/nata/>.
USEPA. 2005a. Guidelines for Carcinogen Risk Assessment EPA/630/P-03/001B. Risk Assessment Forum U.S. Environmental Protection Agency Washington, Dc, National Center for Environmental Assessment.
USEPA. 2005b. Integrated Risk Information System Available from: <http://www.epa.gov/iris>.
USEPA. 2006. National-Scale Air Toxics Assessment for 1999 Available from: <http://www.epa.gov/ttn/atw/nata1999/>.
Watson JG, Chow JC, Fujita EM. 2001. Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment 35(9):1567-1584.
Watson JG, Robinson NF, Chow JC, Henry RC, Kim BM, Pace TG, Meyer EL, Nguyen Q. 1990. The USEPA/ DRI chemical mass balance receptor model, CMB7.0. Environmental Software 5:38-49.
Xie YL, Berkowitz CM. 2006. The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment 40(17):3070-3091.
Xie YL, Hopke PK, Paatero P, Barrie LA, Li SM. 1999a. Identification of source nature and seasonal variations of Arctic aerosol by the multilinear engine. Atmospheric Environment 33(16):2549-2562.
Xie YL, Hopke PK, Paatero P, Barrie LA, Li SM. 1999b. Locations and preferred pathways of possible sources of Arctic aerosol. Atmospheric Environment 33(14):2229-2239.
Yli-Tuomi T, Hopke PK, Paatero P, Basunia MS, Landsberger S, Viisanen Y, Paatero J. 2003. Atmospheric aerosol over Finnish Arctic: source analysis by the multilinear engine and the potential source contribution function. Atmospheric Environment 37(31):4381-4392.
Zhao WX, Hopke PK, Karl T. 2004. Source identification of volatile organic compounds in Houston, Texas. Environmental Science & Technology 38(5):1338-1347.
Zhou LM, Hopke PK, Paatero P, Ondov JM, Pancras JP, Pekney NJ, Davidson CI. 2004. Advanced factor analysis for multiple time resolution aerosol composition data. Atmospheric Environment 38(29):4909-4920.
Zielinska B, Sagebiel J, Arnott WP, Rogers CF, Kelly KE, Wagner DA, Lighty JS, Sarofim AF, Palmer G. 2004. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science & Technology 38(9):2557-2567.
Chapter 2
Brunekreef B, Janssen NAH, deHartog J, Harssema H, Knape M, vanVliet P. 1997. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 8(3):298-303.
Goswami E, Larson T, Lumley T, Liu LJS. 2002. Spatial characteristics of fine particulate matter: Identifying representative monitoring locations in Seattle, Washington. Journal of the Air & Waste Management Association 52(3):324-333.
Grosjean D, Grosjean E, Gertler AW. 2001. On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environmental Science & Technology 35(1):45-53.
Harrison RM, Smith DJT, Luhana L. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science & Technology 30(3):825-832.
Ho KF, Lee SC, Chiu GMY. 2002. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment 36(1):57-65.
Jorquera H, Rappengluck B. 2004. Receptor modeling of ambient VOC at Santiago, Chile. Atmospheric Environment 38(25):4243-4263.
Kim E, Hopke PK, Edgerton ES. 2004a. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38(20):3349-3362.
Kim E, Hopke PK, Larson TV, Maykut NN, Lewtas J. 2004b. Factor analysis of Seattle fine particles. Aerosol Science And Technology 38(7):724-738.
Kim E, Hopke PK, Qin YJ. 2005. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. Journal of the Air & Waste Management Association 55(8):1190-1199.
Kim E, Larson TV, Hopke PK, Slaughter C, Sheppard LE, Claiborn C. 2003. Source identification of PM2.5 in an arid Northwest US City by positive matrix factorization. Atmospheric Research 66(4):291-305.
Kirchstetter TW, Singer BC, Harley RA, Kendall GB, Chan W. 1996. Impact of oxygenated gasoline use on California light-duty vehicle emissions. Environmental Science & Technology 30(2):661-670.
Larsen RK, Baker JE. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science & Technology 37(9):1873-1881.
Larson TV, Covert DS, Kim E, Elleman R, Schreuder AB, Lumley T. 2006. Combining size distribution and chemical species measurements into a multivariate receptor model of PM2.5. Journal of Geophysical Research-Atmospheres 111(D10).
Liu LJS, Box M, Kalman D, Kaufman J, Koenig J, Larson T, Lumley T, Sheppard L, Wallace L. 2003. Exposure assessment of particulate matter for susceptible populations in Seattle. Environmental Health Perspectives 111(7):909-918.
Manoli E, Voutsa D, Samara C. 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. ATMOSPHERIC ENVIRONMENT 36(6):949-961.
Maykut NN, Lewtas J, Kim E, Larson TV. 2003. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology 37(22):5135-5142.
Miguel AH, Kirchstetter TW, Harley RA, Hering SV. 1998. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology 32(4):450-455.
Mukund R, Kelly TJ, Spicer CW. 1996. Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmospheric Environment 30(20):3457-3470.
Paatero P. 1999. The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal Of Computational And Graphical Statistics 8(4):854-888.
Polissar AV, Hopke PK, Paatero P. 1998. Atmospheric aerosol over Alaska - 2. Elemental composition and sources. Journal of Geophysical Research-Atmospheres 103(D15):19045-19057.
PSCAA. 2005. 2004 Air Quality Data Summary. Pudget Sound Clear Air Agency.
Schauer J, Kleeman M, Cass G, Simoneit B. 1999. Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environmental Science & Technology 33(10):1578-1587.
Schauer JJ. 2003. Evaluation of elemental carbon as a marker for diesel particulate matter. Journal of Exposure Analysis and Environmental Epidemiology 13(6):443-453.
Schauer JJ, Fraser MP, Cass GR, Simoneit BRT. 2002. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode. Environmental Science & Technology 36(17):3806-3814.
Siegl W, Hammerle R, Herrmann H, Wenclawiak B, Luers-Jongen B. 1999. Organic emissions profile for a light-duty diesel vehicle. ATMOSPHERIC ENVIRONMENT 33(5):797-805.
USEPA. 1999a. Compendium of Method for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC)[Active Sampling Methodology] EPA/625/R-96/010b. Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268.
USEPA. 1999b. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-13A:Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS) EPA/625/R-96/010b. Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268.
USEPA. 1999c. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-14A Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography EPA/625/R-96/010b. Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268.
USEPA. 1999d. National Air Toxics Program: The Integrated Urban Strategy. Federal Register 64 (137), FRL-6376-6377.
USEPA. 2002a. Health Assessment Document for Diesel Engine Exhaust. Washington, Dc, National Center for Environmental Assessment.
USEPA. 2002b. National-Scale Air Toxics Assessment for 1996 Available from: <http://www.epa.gov/ttn/atw/nata/>.
Wallace L. 2005. Real-time measurements of black carbon indoors and outdoors: A comparison of the photoelectric aerosol sensor and the aethalometer. Aerosol Science and Technology 39(10):1015-1025.
Zhu YF, Hinds WC, Kim S, Shen S, Sioutas C. 2002. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment 36(27):4323-4335.
chapter 3
Bernstein JA, Alexis N, Barnes C, Bernstein IL, Bernstein JA, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB. 2004. Health effects of air pollution. Journal of Allergy and Clinical Immunology 114(5):1116-1123.
Brunekreef B, Holgate ST. 2002. Air pollution and health. Lancet 360(9341):1233-1242.
CalEPA. 2005. http://www.arb.ca.gov/toxics/dieseltac/de-fnds.htm 2005/12/19.
Eberly S. 2005. EPA PMF 1.1 User's Guide. US Environmental Protection Agency,Research Triangle Park, NC 27711.
Eforn B TR. 1993. An introduction to the bootstrap. London: Chapman and Hall.
Morello-Frosch RA, Woodruff TJ, Axelrad DA, Caldwell JC. 2000. Air toxics and health risks in California: The public health implications of outdoor concentrations. Risk Analysis 20(2):273-291.
Mukerjee S, Biswas P. 1992. A Concept of Risk Apportionment of Air Emission Sources for Risk Reduction Considerations. Environmental Technology 13(7):635-646.
Paatero P. 1999. The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational And Graphical Statistics 8(4):854-888.
Pratt GC, Palmer K, Wu CY, Oliaei F, Hollerbach C, Fenske MJ. 2000. An assessment of air toxics in Minnesota. Environmental Health Perspectives 108(9):815-825.
Tam BN, Neumann CM. 2004. A human health assessment of hazardous air pollutants in Portland, OR. Journal of Environmental Management 73(2):131-145.
USEPA. 1993. Clean Air Act 1990 Avaiable from: <http://www.epa.gov/oar/oaqps/peg_caa/pegcaain.html>.
USEPA. 2001. Risk Assessment Guidance for Superfund Volume 3 Part A: Process for Conducting Probabilistic Risk Assessment
USEPA. 2005a. Guidelines for Carcinogen Risk Assessment EPA/630/P-03/001B. Risk Assessment Forum U.S. Environmental Protection Agency Washington, Dc, National Center for Environmental Assessment.
USEPA. 2005b. Health Effects Information Used In Cancer and Noncancer Risk Characterization For the 1999 National-Scale Assessment Available from: <http://www.epa.gov/ttn/atw/nata1999/99pdfs/healtheffectsinfo.pdf>.
USEPA. 2005c. Integrated Risk Information System Available from: <http://www.epa.gov/iris>.
USEPA. 2006. National-Scale Air Toxics Assessment for 1999 Available from: <http://www.epa.gov/ttn/atw/nata1999/>.

appendix
Kim E, Hopke PK, Edgerton ES. 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53(6):731-739.
Kim E, Hopke PK, Larson TV, Maykut NN, Lewtas J. 2004. Factor analysis of Seattle fine particles. Aerosol Science And Technology 38(7):724-738.
Kim E, Hopke PK, Qin YJ. 2005. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. Journal of the Air & Waste Management Association 55(8):1190-1199.
Larsen RK, Baker JE. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science & Technology 37(9):1873-1881.
Lee E, Chan CK, Paatero P. 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33(19):3201-3212.
Maykut NN, Lewtas J, Kim E, Larson TV. 2003. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology 37(22):5135-5142.
Ramadan Z, Eickhout B, Song XH, Buydens LMC, Hopke PK. 2003. Comparison of Positive Matrix Factorization and Multilinear Engine for the source apportionment of particulate pollutants. Chemometrics And Intelligent Laboratory Systems 66(1):15-28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31461-
dc.description.abstract近來,空氣品質隨著經濟的發展而日趨惡化,暴露於空氣污染對於人類健康所造成的不良效應也漸漸受到重視。空氣污染是由各種不同污染源累加而成的混合物,各個污染源對於健康風險的貢獻度也不同,因此,分析空氣污染中的主要來源及其健康風險將可以幫助有關當局建立更有效率的管制策略,以降低民眾因暴露於空氣污染所造成的危害。本研究分為兩部份,第一部份為分析主要的空氣污染來源,第二部份則利用分析結果進行各污染源的健康風險評估。
本研究利用受體模式 (receptor model) Multilinear Engine (ME)推估美國西雅圖地區主要的空氣污染源並量化其貢獻。有別於一般相關研究,懸浮微粒(PM2.5)和氣狀揮發性有機污染物(VOCs)的化學組成同時被放入模式中分析,並比較加入VOCs後是否可以幫助模式分辨更多的汙染源。結果顯示,利用PM2.5的化學組成資料即可辨識出大部分的汙染源,加入VOCs 資料僅幫助我們辨識出另一個VOCs 的背景來源。生質燃燒,二次生成硫酸鹽及硝酸鹽類是PM2.5的主要貢獻者,而VOCs的背景濃度、柴油、生質燃燒則是VOCs的重要來源。此外,本研究將黑碳 (black carbon)的測值與模擬之柴油及生質燃燒微粒進行回歸分析以評估黑碳是否為柴油微粒的代表性指標,結果發現,黑碳與柴油微粒和生質燃燒微粒於冬季期間 (10月至2月) 都呈現良好的相關性,因此於冬季期間,黑碳並非一個單純代表柴油微粒的指標。在風險評估部分,本研究利用來源分析的資料,以汙染源中各物質的濃度乘上單位風險 (unit risk) 估計各汙染源的致癌風險值。結果顯示,除了海洋氣膠外,其餘各汙染源的致癌風險值皆超過1×10-6,其中以VOCs的背景來源風險值最高。雖然加入VOCs 資料進行來源分析對於分辨相似汙染源的貢獻並不非常顯著,但是對於風險評估部分,VOCs確實可以幫助提供更完整的健康風險值。
zh_TW
dc.description.abstractRecently, health impacts from exposures to air pollution have been widely studied. To develop effective control strategies to reduce population risks to complex air pollution, it is important to identify major sources and quantify their health risks. In this thesis, the sources of PM2.5 and VOCs were identified in the first part and the source specific health risks were calculated in the second part.
Speciated PM2.5 and VOCs collected at Beacon Hill, WA between 2000-2004 were analyzed with the multivariate receptor model, Multilinear Engine (ME). The model was performed with (1) only PM2.5 data, and (2) PM2.5 with gaseous air toxic data to compare the model’s performances. The results showed that ME model identified most sources regardless if the gaseous air toxic data were included or not. An additional source related to the background concentration of VOCs was identified when VOCs data were included. Black carbon (BC) measured from aethalometer was regressed against the apportioned diesel particle matter (DPM) and wood burning particle to evaluate if BC a good indicator of DPM. BC correlated well with both the DPM and vegetative burning particles during the heating season (Oct-Feb). Therefore, BC does not represent the actual DPM or wood burning particle mass concentrations without further detailed calibrations.
The source-specific risks were estimated by summing the products of individual air toxics concentrations in each source profile and its unit risk factor. The health risk estimates by sources showed that all sources except ‘marine’ gave a sum of cancer risks higher than 1×10-6, with the highest risk from the background VOCs sources. The improvement from having additional VOCs data in separating similar sources was not apparent. However, the combined data helped us to obtain a whole picture of the source-specific health risks.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:13:19Z (GMT). No. of bitstreams: 1
ntu-95-R93844003-1.pdf: 1269738 bytes, checksum: 2d98e912f2df7cee1c965ab43b17a44e (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsCHINESE ABSTRACT III
ABSTRACT IV
CHAPTER 1. INTRODUCTION 1
RECEPTOR MODELS AND THEIR APPLICATIONS 1
DIESEL PARTICULATE MATTER (DPM) 4
HEALTH RISK ASSESSMENT 5
THESIS ORGANIZATION 6
REFERENCES 10
CHAPTER 2. SOURCE APPORTIONMENT OF SEATTLE PM2.5 AND VOCS DATA 16
INTRODUCTION 16
METHODS 17
RESULTS AND DISCUSSION 20
CONCLUSIONS 25
CHAPTER 3. RISK ASSESSMENT OF SEATTLE PM2.5 AND VOCS DATA 40
INTRODUCTION 40
MATERIAL AND METHOD 42
RESULTS AND DISCUSSION 45
CONCLUSIONS 49
REFERENCES 51
CHAPTER 4. CONCLUSIONS 62
RECOMMENDATION 63
APPENDIX A. SOURCE FEATURES 64
APPENDIX B. FREQUENCY AND CUMULATIVE DISTRIBUTIONS OF SOURCE SPECIFIC RISK 66
dc.language.isoen
dc.subject受體模式zh_TW
dc.subject來源分析zh_TW
dc.subject風險評估zh_TW
dc.subjecthealth risk assessmenten
dc.subjectreceptor modelen
dc.subjectsource apportionmenten
dc.title有害空氣污染物之來源分析與風險評估zh_TW
dc.titleSource Apportionment and Risk Assessment of
Hazardous Air Pollutants
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔣本基,劉希平,龍世俊
dc.subject.keyword受體模式,來源分析,風險評估,zh_TW
dc.subject.keywordreceptor model,source apportionment,health risk assessment,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-08-24
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved