Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周家蓓
dc.contributor.authorChing-Hsiang Chenen
dc.contributor.author陳靖翔zh_TW
dc.date.accessioned2021-06-13T02:44:56Z-
dc.date.available2006-10-25
dc.date.copyright2006-10-25
dc.date.issued2006
dc.date.submitted2006-10-19
dc.identifier.citation1. 財團法人中華顧問工程司,「衝擊式落重撓度資料反算及應用之研究」,研發計畫成果報告,財團法人中華顧問工程司,民國九十五年二月。
2. Shahin, M. Y., “Pavement Management for Airports, Roads, and Parking Lots”, Chapman & Hall, 1994.
3. Bennett, C. R., Chamorro, A., Chen, C., de Solminihac, H., and Flintsch, G. W., “Data Collection Technologies for Road Management, Version 1.0”, East Asia Pacific Transport Unit, The World Bank, Washington, D.C., 2005.
4. Tholen, O., Sharma, J., and Terrel, R. L., “Comparison of Falling Weight Deflectometer with Other Deflection Testing Devices”, Transportation Research Record, No. 1007, Transportation Research Board of National Research Council, Washington, D.C., pp. 20-26, 1985.
5. Karadelis, J. N., “A Numerical Model for the Computation of Concrete Pavement Moduli: A Non-destructive Testing and Assessment Method”, NDT&E International, Vol. 33, Issue 2, pp. 77-84, Elsevier Science Ltd., 2000.
6. Litwinowicz, A., “Pavement Deflection Testing and Evaluation by Back Analysis: Time for a Reality Check?”, Road and Transport Research, Vol. 13, No. 3, ARRB Group, pp. 25-35, 2004.
7. Ullidtz, P., and Coetzee, N. F., “Analytical Procedures in Nondestructive Testing Pavement Evaluation”, Transportation Research Record, No. 1482, Transportation Research Board of National Research Council, Washington, D.C., pp. 61-66, 1995.
8. “AASHTO Guide for Design of Pavement Structures 1993”, American Association of State Highway and Transportation Officials, Washington, DC, 1993.
9. Bennett, D. L., “Use of Nondestructive Testing in the Evaluation of Airport Pavements”, FAA Advisory Circular, AC No. 150/5370-11A, Federal Aviation Administration, U.S. Department of Transportation, 2004.
10. Li, S., and White, T. D., “Falling-Weight Deflectometer Sensor Location in the Backcalculation of Concrete Pavement Moduli”, Journal of Testing and Evaluation, ASTM, Vol. 28, No. 3, pp.166-175, 2000.
11. “LTPP Manual for Falling Weight Deflectometer Measurements: Operational Field Guidelines, Version 3.1”, US Federal Highway Administration, 2000.
12. Khazanovich, L., Tayabji, S. D., and Darter, M. I., “Backcalculation of Layer Parameters for LTPP Test Sections, Volume I: Slab on Elastic Solid and Slab on Dense-Liquid Foundation Analysis of Rigid Pavements”, Publication No. FHWA-RD-00-086, Federal Highways Administration, McLean, VA, 2001.
13. Rufino, D., Roesler, J., and Barenberg, E. J., “Evaluation of Different Methods and Models for Backcalculating Concrete Pavement Properties Based on Denver International Airport Data”, 2002 Federal Aviation Administration Airport Technology Transfer Conference, 2002.
14. 李有豐,「橋梁檢測評估與維修人員訓練講習班論文集」,第七章 非破壞檢測與評估,pp. 7-1~7-61,交通部運輸研究所,台北,民國八十九年八月。
15. http://training.ce.washington.edu/WSDOT
16. http://www.csir.co.za
17. http://www.dynaflect.com
18. http://nersp.nerdc.ufl.edu/~tia/5837-14.pdf
19. Sebaaly, B., Davies, T. G., and Mamlouk, M. S., “Dynamics of Falling Weight Deflectometer”, Journal of Transportation Engineering, Vol. 111, No. 6, American Society of Civil Engineers, pp. 618-632, 1985.
20. http://www.dynatest.com
21. 周明輝,「舖面落重式撓度儀之校正與成效評估研究」,中原大學土木工程學系碩士論文,民國九十年。
22. http://www.pascousa.com
23. http://www.jilsfwd.com
24. http://www.carlbro.com
25. Carl Bro Group FWD Educational Training Course, 2005.
26. Roesset, J. M., and Shao, K.-Y., “Dynamic Interpretation of Dynaflect and Falling Weight Deflectometer Tests”, Transportation Research Record, No. 1022, Transportation Research Board of National Research Council, Washington, D.C., pp. 7-16, 1985.
27. George, K. P., “Falling Weight Deflectometer For Estimating Subgrade Resilient Moduli”, Report No. FHWA/MS-DOT-RD-03-153, the Mississippi Department of Transportation, U.S. Department of Transportation, and FHWA, 2003.
28. McQueen, R. D., Marsey, W., and Arze, J. M., “Analysis of Nondestructive Test Data on Flexible Pavements Acquired at the National Airport Pavement Test Facility”, Proceedings of the 2001 Airfield Pavement Specialty Conference, ASCE, Chicago, IL, USA, 2001.
29. Uddin, W., and Garza, S., “In Situ Material Characterization of Pavement-subgrade Systems Using FWD Data and Validation by 3D-FE Simulations”, Federal Aviation Administration Airport Technology Transfer Conference, 2002.
30. Huang, Y. H., “Pavement Analysis and Design, Second Edition”, Pearson Prentice Hall, 2004.
31. http://www.airporttech.tc.faa.gov/naptf/download/Readme.htm
32. http://www.airporttech.tc.faa.gov/naptf/download/index1.asp
33. 張嘉麟,「動態反算於衝擊性撓度法之應用研究」,淡江大學土木工程研究所碩士論文,民國八十五年。
34. 徐學禹,「鋪面落重撓度儀回算案例研究」,淡江大學土木工程研究所碩士論文,民國八十八年。
35. 許瑞升,「荷重傳遞效應與溫度翹曲對剛性鋪面回算影響之研究」,淡江大學土木工程研究所碩士論文,民國八十七年。
36. 白建華、李朝聰、李英豪,「剛性鋪面回算程式之建立-溫氏基礎模式」,中華民國第九屆鋪面工程學術研討會論文輯,民國八十六年。
37. 李朝聰、李英豪,「接縫式混凝土鋪面回算程式之建立」,中華民國第九屆鋪面工程學術研討會論文輯,民國八十六年。
38. 石俊雄,「撓度指標法之視窗化資料庫回算軟體建立」,淡江大學土木工程研究所碩士論文,民國八十七年。
39. “User’s Manual for RoSy DESIGN for Aircraft Loads”, Carl Bro Pavement Consultants, 2002.
40. “MODTAG User’s Manual Version 3.0 First Edition”, Virginia Department of Transportation, 2004.
41. William, G. W., “Backcalculation of Pavement Layers Moduli Using 3D Nonlinear Explicit Finite Element Analysis”, master thesis, West Virginia University, 1999.
42. Bredenhann, S. J., and van de Ven, M. F. C., “Application of Artificial Neural Networks in the Back-calculation of Flexible Pavement Layer Moduli from Deflection Measurements”, Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa, 2004.
43. Reddy, M. A., Reddy, K. S., and Pandey, B. B., “Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli”, The International Journal of Pavement Engineering, Vol. 5, No. 2, pp. 81-90, 2004.
44. 鄭有良,「類神經網路於鋪面評估之應用」,國立成功大學土木工程研究所碩士論文,民國九十二年。
45. Ceylan, H., Guclu, A., Tutumluer, E., and Thompson, M. R., “Backcalculation of Full-depth asphalt Pavement Layer Moduli Considering Nonlinear Stress-dependent Subgrade Behavior”, The International Journal of Pavement Engineering, Vol. 6, No. 3, pp. 171-182, 2005.
46. Hall, K. T., Darter, M. I., Hoerner, T. E., and Khazanovich, L., “LTPP Data Analysis-Phase I: Validation of Guidelines for k-Value Selection and Concrete Pavement Performance Prediction”, Technical Report FHWA-RD-96-198, Federal Highway Administration, 1997.
47. Khazanovich, L., Mcpeak, T. J., and Tayabji, S. D., “LTPP Rigid Pavement FWD Deflection Analysis and Backcalculation Procedure”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 246-266, 2000.
48. “Standard Test Method for Deflections with a Falling-Weight-Type Impulse Load Device”, ASTM D 4694-96 (Reapproved 2003), ASTM International, 2003.
49. “Standard Guide for General Pavement Deflection Measurements”, ASTM D 4695-03, ASTM International, 2003.
50. Sebaaly, P. E., Bemanian, S., and Lani, S., “Nevada's Approach to the Backcalculation Process”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 59-71, 2000.
51. Dong, M., and Hayhoe, G. F., “Analysis of Falling Weight Deflectometer Tests at Denver International Airport”, Federal Aviation Administration Airport Technology Transfer Conference, 2002.
52. Garg, N., and Marsey, W. H., “Comparison between Falling Weight Deflectometer and Static Deflection Measurements on Flexible Pavements at the National Airport Pavement Test Facility (NAPTF)”, 2002 Federal Aviation Administration Airport Technology Transfer Conference, 2002.
53. Guo, E. H., and Marsey, W., “Verification of Curling in PCC Slabs at FAA National Airport Pavement Test Facility”, Advancing Airfield Pavements: Proceedings of the 2001 Airfield Pavement Specialty Conference, August 5-8, 2001, Chicago, Illinois, 2001.
54. Park, H. M., Kim, Y. R., Park, S. W., “Assessment of Pavement Layer Condition with Use of Multiload-Level Falling Weight Deflectometer Deflections”, Transportation Research Record, No. 1905, Transportation Research Board of National Research Council, Washington, D.C., pp. 107-116, 2005.
55. Kim, Y. R., and Park, H., “Use of Falling Weight Deflectometer Multi-Load Data for Pavement Strength Estimation”, Report No. FHWA/NC/2002-006, North Carolina Department of Transportation, 2002.
56. Chang, D.-W., Chang, C.-L., “Dynamic Interpretation for Impulsive Deflection Test on Flexible Pavements”, Chinese Journal of Mechanics, Series A, Vol. 14, No. 2, pp. 91-100, 1998.
57. Stubstad, R. N., Irwin, L. H., Lukanen, E. O., and Clevenson, M. L., “It's 10 o'Clock: Do You Know Where Your Sensors Are?”, Transportation Research Record, No. 1716, Transportation Research Board of National Research Council, Washington, D.C., pp. 10-19, 2000.
58. George, K. P., “Falling Weight Deflectometer for Estimating Subgrade Moduli”, Report No. FHWA/MS-DOT-RD-03-153, Mississippi Department of Transportation, 2003.
59. Von Quintus, H. L., and Simpson, A. L., “Back-Calculation of Layer Parameters for LTPP Test Sections, Volume II: Layered Elastic Analysis for Flexible and Rigid Pavements”, Publication No. FHWA-RD-01-113, Federal Highways Administration, McLean, VA, 2002.
60. ERES Consultants, Inc., “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures”, Final report, NCHRP Project 1-37A, 2004.
http://www.trb.org/mepdg/guide.htm
61. Porter, M. L., and Guinn Jr., R. J., “Assessment of Dowel Bar Research”, Final Report, Iowa DOT Project HR-1080, Center for Transportation Research and Education, Iowa State University, 2002.
62. Chou, Y. T., “Estimating Load Transfer from Measured Joint Efficiency in Concrete Pavements”, Transportation Research Record, No.1482, Transportation Research Board of National Research Council, Washington, D.C., pp. 19-25, 1995.
63. Hammons, M. I., “Advanced Pavement Design: Finite Element Modeling for Rigid Pavement Joints, Report II: Model Development”, Report No. DOT/FAA/AR-97/7, Federal Aviation Administration, U.S. Department of Transportation, 1998.
64. Mahoney, J. P., Winters, B. C., Jackson, N. C., and Pierce, L. M., “Some Observations about Backcalculation and Use of a Stiff Layer Condition”, Transportation Research Record, No. 1384, Transportation Research Board of National Research Council, Washington, D.C., pp. 8-14, 1993.
65. Davies, T. G., and Mamlouk, M. S., “Theoretical Response of Multilayer Pavement System to Dynamic Nondestructive Testing”, Transportation Research Record, No. 1022, Transportation Research Board of National Research Council, Washington, D.C., pp. 1-7, 1985.
66. Chang, D.-W., Kang, Y. V., Roesset, J. M., and Stokoe II, K. H., “Effect of Depth to Bedrock on Deflection Basins Obtained with Dynaflect and Falling Weight Deflectometer Tests”, Transportation Research Record, No. 1355, Transportation Research Board of National Research Council, Washington, D.C., pp. 8-16, 1992.
67. Roesset, J. M., Stokoe II, K. H., and Seng, C.-R., “Determination of Depth to Bedrock from Falling Weight Deflectometer Test Data”, Transportation Research Record, No. 1504, Transportation Research Board of National Research Council, Washington, D.C., pp. 68-78, 1995.
68. Uddin, W., Meyer, A. H., and Hudson, W. R., “Rigid Bottom Considerations for Nondestructive Evaluation of Pavements”, Transportation Research Record, No. 1070, Transportation Research Board of National Research Council, Washington, D.C., pp. 21-29, 1986.
69. Seeds, S. B., Alavi, S. H., Ott, W. C., Mikhail, M., and Mactutis, J. A., “Evaluation of Laboratory Determined and Nondestructive Test Based Resilient Modulus Values from WesTrack Experiment”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 72-94, 2000.
70. Shalaby, A., Liske, T., and Kavussi, A., “Comparing Back-calculated and Laboratory Resilient Moduli of Bituminous Paving Mixtures”, Canadian Journal of Civil Engineering, Vol. 31, No. 6, NRC Research Press, National Research Council of Canada, pp. 988-996, 2004.
71. Ping, W. V., Yang, Z., and Gao, Z., “Field and Laboratory Determination of Granular Subgrade Moduli”, Journal of Performance of Constructed Facilities, Vol. 16, No. 4, American Society of Civil Engineers, pp. 149-159, 2002.
72. Flintsch, G. W., Al-Qadi, I. L., Park, Y., Brandon, T. L., and Appea, A., “Relationship between Backcalculated and Laboratory-Measured Resilient Moduli of Unbound Materials”, Transportation Research Record, No. 1849, Transportation Research Board of National Research Council, Washington, D.C., pp. 177-182, 2003.
73. Ullidtz, P., “Will Nonlinear Backcalculation Help?”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 14-22, 2000.
74. Chang, D.-W., Roesset, J. M., and Stokoe II, K. H., “Nonlinear Effects in Falling Weight Deflectometer Tests”, Transportation Research Record, No. 1355, Transportation Research Board of National Research Council, Washington, D.C., pp. 1-7, 1992.
75. Zhou, H., “Comparison of Backcalculated and Laboratory Measured Moduli on AC and Granular Base Layer Materials”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 161-172, 2000.
76. Khazanovich, L., “Dynamic Analysis of FWD Test Results for Rigid Pavements”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 398-412, 2000.
77. Thomson, W. T., and Dahleh, M. D., “Theory of Vibration with Applications”, 5th edition, Prentice Hall, 1998.
78. Clough, R. W., and Penzien, J., “Dynamics of Structures”, 2nd edition, McGraw-Hill, 1993.
79. Nazarian, S., and Boddapati, K. M., “Pavement-Falling Weight Deflectometer Interaction Using Dynamic Finite-Element Analysis”, Transportation Research Record, No. 1482, Transportation Research Board of National Research Council, Washington, D.C., pp. 33-43, 1995.
80. Matsui, K., Kikuta, Y., Nishizawa, T., and Kasahara, A., “Comparative Studies of Backcalculated Results from FWDs with Different Loading Duration”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp.470-483, 2000.
81. Chatti, K., Ji, Y., and Harichandran, R., “Dynamic Time Domain Backcalculation of Layer Moduli, Damping, and Thicknesses in Flexible Pavements”, Transportation Research Record, No. 1869, Transportation Research Board of National Research Council, Washington, D.C., pp. 106-116, 2004.
82. Al-Khoury, R., Scarpas, A., Kasbergen, C., and Blauwendraad, J., “Spectral Element Technique for Efficient Parameter Identification of Layered Media Part I: Forward Calculation”, International Journal of Solids and Structures, Vol. 38, Issue 9, Elsevier Science Ltd., pp. 1605-1623, 2001.
83. Al-Khoury, R., Scarpas, A., Kasbergen, C., and Blauwendraad, J., “Spectral Element Technique for Efficient Parameter Identification of Layered Media Part II: Inverse calculation”, International Journal of Solids and Structures, Vol. 38, Issue 48-49, Elsevier Science Ltd., pp. 8753-8772, 2001.
84. Al-Khoury, R., Scarpas, A., Kasbergen, C., Blaauwendraad, J., and Gurp, C. van., “Forward and Inverse Models for Parameter Identification of Layered Media”, International Journal of Geomechanics, American Society of Civil Engineers, Vol. 1, Issue 4, pp. 441-458, 2001.
85. Burak Goktepe, A., Agar, E., Hilmi Lav, A., “Advances in Backcalculating the Mechanical Properties of Flexible Pavements”, Advances in Engineering Software, Volume 37, Issue 7, pp. 421-431, 2006.
86. Liang, R., and Zeng, S., “Efficient Dynamic Analysis of Multilayered System during Falling Weight Deflectometer Experiments”, Journal of Transportation Engineering, Vol. 128, No. 4, American Society of Civil Engineers, pp. 366-374, 2002.
87. Ketcham, S. A., “Dynamic Response Measurements and Identification Analysis of a Pavement During Falling-Weight Deflectometer Experiments”, Transportation Research Record, No. 1415, Transportation Research Board of National Research Council, Washington, D.C., pp. 78-87, 1993.
88. Shoukry, S. N., “Backcalculation of Thermally Deformed Concrete Pavements”, Transportation Research Record, No. 1716, Transportation Research Board of National Research Council, Washington, D.C., pp. 64-72, 2000.
89. Foinquinos, R., Roesset, J. M., Stokoe II, K. H., “Response of Pavement Systems to Dynamic Loads Imposed by Nondestructive Tests”, Transportation Research Record, No. 1504, Transportation Research Board of National Research Council, Washington, D.C., pp. 57-67, 1995.
90. Boresi, A. P., and Chong, K. P., “Elasticity in Engineering Mechanics, 2nd edition”, John Wiley & Sons, 2000.
91. Achenbach, J. D., “Wave Propagation in Elastic Solids”, North-Holland Pub. Co., 1973.
92. Udías, A., “Principles of Seismology”, Cambridge University Press, 1999.
93. 張麟軍,「整合性應力波傳法評估場址頻率特性之研究」,國立中央大學應用地質研究所碩士論文,民國九十一年。
94. Roesset, J. M., “Nondestructive Dynamic Testing of Soils and Pavements”, Tamkang Journal of Science and Engineering, Vol. 1, No. 2, pp. 61-81, 1998.
95. Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J., “Concepts and Applications of Finite Element Analysis, 4th Edition”, John Wiley & Sons, 2001.
96. 林彥文,「以三維有限元素法模擬混凝土版塊受力情形-以中正機場為例」,國立台灣大學土木工程研究所碩士論文,民國九十四年。
97. Uddin, W., Zhang, D., and Fernandez, F., “Finite Element Simulation of Pavement Discontinuities and Dynamic Load Response”, Transportation Research Record, No. 1448, Transportation Research Board of National Research Council, Washington, D.C., pp. 100-106, 1994.
98. Stolle, D., “Pavement Displacement Sensitivity to Layer Moduli”, Canadian Geotechnical Journal, Vol. 39, No. 6, National Research Council Press, Canada, pp. 1395-1398, 2002.
99. Dong, Q. X., Hachiya, Y., Takahashi, O., Tsubokawa, Y., and Matsui, K., “An Efficient Backcalculation Algorithm of Time Domain for Large-scale Pavement Structures Using Ritz Vectors”, Finite Elements in Analysis and Design, Vol. 38 , Issue 12, Elsevier Science Publishers B. V., pp. 1131-1150, 2002.
100. Chatti, K, and Kim, T., “Effect of Frequency-dependent Asphalt Concrete Layer Moduli on Pavement Response”, Nondestructive Testing of Pavement and Backcalculation of Moduli: Third Volume, ASTM STP 1375, American Society for Testing and Materials, pp. 365-382, 2000.
101. Loizos, A., and Scarpas, A. T., “Verification of Falling Weight Deflectometer Backanalysis Using a Dynamic Finite Elements Simulation”, The International Journal of Pavement Engineering, Vol. 6, No. 2, Taylor & Francis Group, pp. 115-123, 2005.
102. Sukumaran, B., Chamala, N., Willis, M., Davis, J., Jurewicz, S., and Kyatham, V., “Three Dimensional Finite Element Modeling of Flexible Pavements”, 2004 FAA Worldwide Airport Technology Transfer Conference, 2004.
103. http://www.pavement-consultants.com
104. “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, ASTM C39/C39M-04a, ASTM International.
105. “Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression”, ASTM C469-94, ASTM International.
106. “Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))”, ASTM D 1557-91 (Reapproved 1998), ASTM International.
107. “Standard Test Method for CBR (California Bearing Ratio) of Laboratory-compacted Soils”, ASTM D 1883-94, ASTM International.
108. Han, Yuh-Puu, “Resilient Modulus Estimation System”, Ph.D. dissertation, University of Missouri-Rolla, 2005.
109. “Getting Started with ABAQUS”, Version 6.4, Hibbit, Karlsson &Sorensen, Inc., 2003.
110. “ABAQUS Analysis User’s Manual”, Version 6.4, Hibbit, Karlsson & Sorensen, Inc., 2003.
111. 「國立台灣大學水源校區地質鑽探工程地質鑽探報告書」,巨東地質技術工程有限公司,民國九十四年。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31353-
dc.description.abstract落重撓度儀(falling weight deflectometer, FWD)本身經四十年發展雖已成熟,但其試驗進行方法與資料之後續分析仍為一有待加強之重要課題。本研究主要探討剛性鋪面下方堅硬層對FWD試驗與反算分析之影響,並建立靜力反算之動力修正係數,另針對剛性鋪面提出FWD檢測荷重建議。本研究於台灣大學實驗道路面層25 cm與40 cm厚之剛性鋪面進行FWD撓度試驗,並以有限元素法建構實驗道路剛性鋪面之軸對稱動力數值模型,利用此數值模型探討鋪面下方堅硬層對鋪面受FWD衝擊荷重產生之動力效應。若調整鋪面動力有限元素模型之路基厚度等參數,使其模擬結果與FWD之撓度歷時相符,將可用於判定淺層之地下水位與堅硬層所在深度。本研究亦利用靜力反算程式分析有限元素模擬之鋪面動力撓度,建立動力修正係數,以改善靜力線彈性反算程式之分析成效。另外,研究中並利用實驗道路撓度資料,探討落重撓度儀不同檢測荷重對鋪面撓度盤、有效反應深度、動力及靜力反算結果之影響,進而歸納出面層25 cm厚之剛性鋪面結構FWD檢測荷重在70∼220 kN範圍內,而面層40 cm厚者之荷重於130∼250 kN時,其之撓度分析與反算結果較具有一致性,且荷重之衝擊時間應在25 msec以上較佳。zh_TW
dc.description.abstractFalling weight deflectometer (FWD) had been well developed in the past forty years, but the procedure of FWD tests and follow-up deflection analyses still need to be improved. The effects of stiff layer beneath the rigid pavement on FWD tests as well as moduli backcalculation are discussed in this research. The dynamic correction factors of traditional static backcalculation and the FWD load recommendations of rigid pavements are also presented. The FWD tests are conducted on rigid pavements with 25 cm and 40 cm thick concrete slabs of experimental pavement sections at National Taiwan University. The axisymmetric dynamic numerical models of the two rigid pavement sections are established through finite element method. The models are adopted to analyze the dynamic effects of rigid pavements due to the stiff layer when subjected to FWD impulse loads. If the simulated and measured deflection time histories are fitted by varying parameters such as the thickness of subgrade, it is possible to determine the water table and the depth to stiff layer. In addition, the dynamic correction factors are derived by statically backcalculating the deflections computed by dynamic finite element models to improve the traditional statically backcalculated results. Moreover, the deflection data of the two pavement sections are used to analyze the normalized deflection basins, depths of effective reaction, dynamic and static backcalculation results affected by different FWD loads. It is concluded that concrete slab with thickness of 25 cm and 40 cm, the applied testing load ranges of 70~220 kN and 130~250 kN are recommended, respectively. And the pulse durations of the FWD impulse loads should be longer than 25 msec.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:44:56Z (GMT). No. of bitstreams: 1
ntu-95-R93521511-1.pdf: 5005636 bytes, checksum: 5b8fb1e91c2908ac4e5905c220352de4 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 一
摘要 五
目錄 七
圖目錄 ㄧ一
表目錄 ㄧ七
第一章 緒論 - 1 -
1.1 研究背景 - 1 -
1.2 研究目的 - 3 -
1.3 研究內容與方法 - 3 -
1.3.1 有限元素與反算分析 - 4 -
1.3.2 檢測荷重分析 - 4 -
1.4 研究流程 - 6 -
第二章 文獻回顧 - 9 -
2.1 落重撓度儀簡介 - 10 -
2.1.1 非破壞性檢測儀器 - 10 -
2.1.2 落重撓度儀運作原理 - 16 -
2.1.3 落重撓度儀之特性 - 22 -
2.2 反算程式與原理 - 26 -
2.2.1 迭代法 - 26 -
2.2.2 版理論法 - 28 -
2.2.3 資料庫法 - 32 -
2.2.4 等效厚度法 - 33 -
2.2.5 其他 - 36 -
2.3 落重撓度儀檢測荷重 - 39 -
2.4 落重撓度資料應用與反算 - 43 -
2.4.1 落重撓度資料之應用 - 43 -
2.4.2 反算分析之困難與改善 - 50 -
2.4.3 其他反算相關議題 - 59 -
2.5 鋪面動力行為 - 60 -
2.5.1 應力波傳 - 60 -
2.5.2 有限元素法 - 68 -
2.5.3 堅硬層(Stiff Layer)之影響與其深度估算 - 75 -
2.6 小結 - 88 -
第三章 實驗儀器與實驗道路介紹 - 89 -
3.1 Carl Bro PRI 2100落重撓度儀 - 89 -
3.2 實驗道路 - 91 -
3.2.1 實驗道路規格 - 91 -
3.2.2 鋪面材料試驗 - 92 -
第四章 有限元素與反算分析 - 97 -
4.1 實驗道路落重撓度試驗 - 97 -
4.2 動力有限元素模型 - 99 -
4.2.1 ABAQUS/Explicit簡介 - 99 -
4.2.2 模型建構與收斂性分析 - 102 -
4.2.3 堅硬層參數分析 - 105 -
4.2.4 實驗道路模擬與堅硬層深度驗證 - 113 -
4.2.5 鋪面動力與靜力行為比較 - 122 -
4.3 堅硬層與靜力反算分析 - 124 -
4.4 小結 - 129 -
第五章 落重撓度儀檢測荷重分析 - 135 -
5.1 實驗道路多級荷重撓度試驗 - 135 -
5.2 撓度盤分析 - 136 -
5.2.1 荷重與撓度關係 - 137 -
5.2.2 不同剛性鋪面結構之撓度盤比較 - 141 -
5.2.3 不同荷重之撓度盤比較 - 142 -
5.3 動力與靜力反算分析 - 149 -
5.3.1 動力有限元素試誤反算 - 149 -
5.3.2 靜力程式反算 - 150 -
5.4 鋪面受衝擊荷重之有效反應深度 - 156 -
5.5 落重撓度儀檢測荷重建議 - 160 -
第六章 結論與建議 - 165 -
6.1 結論 - 165 -
6.2 建議 - 168 -
參考文獻 - 169 -
dc.language.isozh-TW
dc.subject落重撓度儀(FWD)zh_TW
dc.subject鋪面反算zh_TW
dc.subject衝擊荷重zh_TW
dc.subject堅硬層zh_TW
dc.subject有限元素法zh_TW
dc.subjectfalling weight deflectometer (FWD)en
dc.subjectfinite element methoden
dc.subjectstiff layeren
dc.subjectimpulse loaden
dc.subjectpavement moduli backcalculationen
dc.title落重撓度儀檢測荷重與堅硬層深度對反算分析之影響zh_TW
dc.titleThe Effects of FWD Load and Stiff Layer Depth on Backcalculation Analysisen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建旭,張德文
dc.subject.keyword落重撓度儀(FWD),鋪面反算,衝擊荷重,堅硬層,有限元素法,zh_TW
dc.subject.keywordfalling weight deflectometer (FWD),pavement moduli backcalculation,impulse load,stiff layer,finite element method,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2006-10-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved