Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳美如(Mei-Ru Chen)
dc.contributor.authorChih-Chung Luen
dc.contributor.author呂志忠zh_TW
dc.date.accessioned2021-06-13T02:43:17Z-
dc.date.available2009-01-09
dc.date.copyright2007-01-09
dc.date.issued2006
dc.date.submitted2006-11-28
dc.identifier.citationAdamson, A. L. & Kenney, S. (2001). Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75, 2388-99.
Adamson, A. L. & Kenney, S. C. (1998). Rescue of the Epstein-Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product. Virology 251, 187-97.
Ahsan, N., Kanda, T., Nagashima, K. & Takada, K. (2005). Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production. J Virol 79, 4415-24.
Akbari, M., Otterlei, M., Pena-Diaz, J., Aas, P. A., Kavli, B., Liabakk, N. B., Hagen, L., Imai, K., Durandy, A., Slupphaug, G. & Krokan, H. E. (2004). Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res 32, 5486-98.
Amon, W. & Farrell, P. J. (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15, 149-56.
Aravind, L. & Koonin, E. V. (2000). The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biol 1, RESEARCH0007.
Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9, 395-404.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-11.
Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J. P., van Kooten, C., Liu, Y. J., Rousset, F. & Saeland, S. (1994). The CD40 antigen and its ligand. Annu Rev Immunol 12, 881-922.
Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C., Orntoft, T., Lukas, J. & Bartek, J. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-70.
Batisse, J., Manet, E., Middeldorp, J., Sergeant, A. & Gruffat, H. (2005). Epstein-Barr virus mRNA export factor EB2 is essential for intranuclear capsid assembly and production of gp350. J Virol 79, 14102-11.
Baumann, M., Feederle, R., Kremmer, E. & Hammerschmidt, W. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. Embo J 18, 6095-105.
Beisser, P. S., Verzijl, D., Gruijthuijsen, Y. K., Beuken, E., Smit, M. J., Leurs, R., Bruggeman, C. A. & Vink, C. (2005). The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79, 441-9.
Bell, P., Lieberman, P. M. & Maul, G. G. (2000). Lytic but not latent replication of epstein-barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J Virol 74, 11800-10.
Bennett, S. E. & Mosbaugh, D. W. (1992). Characterization of the Escherichia coli uracil-DNA glycosylase.inhibitor protein complex. J Biol Chem 267, 22512-21.
Biggin, M., Bodescot, M., Perricaudet, M. & Farrell, P. (1987). Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61, 3120-32.
Brummelkamp, T. R., Bernards, R. & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-3.
Bryant, H. & Farrell, P. J. (2002). Signal Transduction and Transcription Factor Modification during Reactivation of Epstein-Barr Virus from Latency. J Virol 76, 10290-8.
Cayrol, C. & Flemington, E. K. (1996). The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. Embo J 15, 2748-59.
Chang, J. T. (2004). An economic and efficient method of RNAi vector constructions. Anal Biochem 334, 199-200.
Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M. & Liu, S. T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-39.
Chang, Y., Chang, S. S., Lee, H. H., Doong, S. L., Takada, K. & Tsai, C. H. (2004a). Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371-9.
Chang, Y., Cheng, S. D. & Tsai, C. H. (2002). Chromosomal integration of Epstein-Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck 24, 143-50.
Chang, Y., Lee, H. H., Chang, S. S., Hsu, T. Y., Wang, P. W., Chang, Y. S., Takada, K. & Tsai, C. H. (2004b). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-36.
Chang, Y., Sheen, T. S., Lu, J., Huang, Y. T., Chen, J. Y., Yang, C. S. & Tsai, C. H. (1998). Detection of transcripts initiated from two viral promoters (Cp and Wp) in Epstein-Barr virus-infected nasopharyngeal carcinoma cells and biopsies. Lab Invest 78, 715-26.
Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-66.
Chen, C. & Okayama, H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745-52.
Chen, F., Zou, J. Z., di Renzo, L., Winberg, G., Hu, L. F., Klein, E., Klein, G. & Ernberg, I. (1995). A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol 69, 3752-8.
Chen, J. J., Wu, R., Yang, P. C., Huang, J. Y., Sher, Y. P., Han, M. H., Kao, W. C., Lee, P. J., Chiu, T. F., Chang, F., Chu, Y. W., Wu, C. W. & Peck, K. (1998). Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51, 313-24.
Chen, L. W., Chang, P. J., Delecluse, H. J. & Miller, G. (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79, 9635-50.
Chien, Y. C., Chen, J. Y., Liu, M. Y., Yang, H. I., Hsu, M. M., Chen, C. J. & Yang, C. S. (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-82.
Ching, R. W., Dellaire, G., Eskiw, C. H. & Bazett-Jones, D. P. (2005). PML bodies: a meeting place for genomic loci? J Cell Sci 118, 847-54.
Courcelle, C. T., Courcelle, J., Prichard, M. N. & Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. J Virol 75, 7592-601.
Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H., Shirata, N. & Tsurumi, T. (2005). Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol 79, 3409-18.
Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H. & Tsurumi, T. (2004). In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus. J Biol Chem 279, 54817-25.
Daikoku, T., Kudoh, A., Sugaya, Y., Iwahori, S., Shirata, N., Isomura, H. & Tsurumi, T. (2006). Postreplicative mismatch repair factors are recruited to Epstein-Barr virus replication compartments. J Biol Chem 281, 11422-30.
Darr, C. D., Mauser, A. & Kenney, S. (2001). Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75, 6135-42.
de Jesus, O., Smith, P. R., Spender, L. C., Elgueta Karstegl, C., Niller, H. H., Huang, D. & Farrell, P. J. (2003). Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84, 1443-50.
De Silva, F. S. & Moss, B. (2003). Vaccinia virus uracil DNA glycosylase has an essential role in DNA synthesis that is independent of its glycosylase activity: catalytic site mutations reduce virulence but not virus replication in cultured cells. J Virol 77, 159-66.
Decaussin, G., Leclerc, V. & Ooka, T. (1995). The lytic cycle of Epstein-Barr virus in the nonproducer Raji line can be rescued by the expression of a 135-kilodalton protein encoded by the BALF2 open reading frame. J Virol 69, 7309-14.
Dellaire, G. & Bazett-Jones, D. P. (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963-77.
Dellemijn, P. L., Brandenburg, A., Niesters, H. G., van den Bent, M. J., Rothbarth, P. H. & Vlasveld, L. T. (1995). Successful treatment with ganciclovir of presumed Epstein-Barr meningo-encephalitis following bone marrow transplant. Bone Marrow Transplant 16, 311-2.
DiMaio, D. & Coen, D. M. (2001). Replication strategies of DNA viruses. In Fields virology
pp. 119-132. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Pa, Philadelphia.
: Lippincott-Raven
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863-8.
Epeldegui, M., Hung, Y. P., McQuay, A., Ambinder, R. F. & Martinez-Maza, O. (2006). Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol Immunol.
Everett, R. D. (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20, 7266-73.
Everett, R. D., Sourvinos, G., Leiper, C., Clements, J. B. & Orr, A. (2004). Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol 78, 1903-17.
Farrell, P. J., Rowe, D. T., Rooney, C. M. & Kouzarides, T. (1989). Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. Embo J 8, 127-32.
Feng, W. H., Hong, G., Delecluse, H. J. & Kenney, S. C. (2004). Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78, 1893-902.
Feng, W. H., Israel, B., Raab-Traub, N., Busson, P. & Kenney, S. C. (2002). Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res 62, 1920-6.
Fischer, J. A., Muller-Weeks, S. & Caradonna, S. (2004). Proteolytic degradation of the nuclear isoform of uracil-DNA glycosylase occurs during the S phase of the cell cycle. DNA Repair (Amst) 3, 505-13.
Fisher, M., Shenker, I. R. & Nussbaum, M. P. (1980). Infectious mononucleosis; review of complications in hospitalized series. N Y State J Med 80, 929-34.
Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-9.
Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006.
Flemington, E. & Speck, S. H. (1990). Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227-32.
Flemington, E. K. (2001). Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75, 4475-81.
Focher, F., Mazzarello, P., Verri, A., Hubscher, U. & Spadari, S. (1990). Activity profiles of enzymes that control the uracil incorporation into DNA during neuronal development. Mutat Res 237, 65-73.
Focher, F., Verri, A., Verzeletti, S., Mazzarello, P. & Spadari, S. (1992). Uracil in OriS of herpes simplex 1 alters its specific recognition by origin binding protein (OBP): does virus induced uracil-DNA glycosylase play a key role in viral reactivation and replication? Chromosoma 102, S67-71.
Gao, Z., Krithivas, A., Finan, J. E., Semmes, O. J., Zhou, S., Wang, Y. & Hayward, S. D. (1998). The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72, 8559-67.
Gershburg, E. & Pagano, J. S. (2005). Epstein-Barr virus infections: prospects for treatment. J Antimicrob Chemother 56, 277-81.
Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R. A., Jr., Kastrinakis, N. G., Levy, B., Kletsas, D., Yoneta, A., Herlyn, M., Kittas, C. & Halazonetis, T. D. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-13.
Gottschalk, S., Rooney, C. M. & Heslop, H. E. (2005). Post-transplant lymphoproliferative disorders. Annu Rev Med 56, 29-44.
Grose, C. (1989). Neurologic Compications of Infectious Mononucleosis. In Infectious Mononucleosis, 2nd edn, pp. 49-68. Edited by D. Schlossberg. New York: Praeger.
Gruffat, H., Batisse, J., Pich, D., Neuhierl, B., Manet, E., Hammerschmidt, W. & Sergeant, A. (2002). Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76, 9635-44.
Gruffat, H. & Sergeant, A. (1994). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-8.
Guillet, M. & Boiteux, S. (2003). Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae. Mol Cell Biol 23, 8386-94.
Haan, K. M., Lee, S. K. & Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein-Barr virus-induced membrane fusion. Virology 290, 106-14.
Hahn, A. M., Huye, L. E., Ning, S., Webster-Cyriaque, J. & Pagano, J. S. (2005). Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 79, 10040-52.
Hammerschmidt, W. & Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-33.
Hatfull, G., Bankier, A. T., Barrell, B. G. & Farrell, P. J. (1988). Sequence analysis of Raji Epstein-Barr virus DNA. Virology 164, 334-40.
He, B., Raab-Traub, N., Casali, P. & Cerutti, A. (2003). EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 171, 5215-24.
Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G. & Rickinson, A. (1993). Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90, 8479-83.
Herrold, R. E., Marchini, A., Fruehling, S. & Longnecker, R. (1996). Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. J Virol 70, 2049-54.
Hochberg, D., Middeldorp, J. M., Catalina, M., Sullivan, J. L., Luzuriaga, K. & Thorley-Lawson, D. A. (2004). Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101, 239-44.
Hong, G. K., Gulley, M. L., Feng, W. H., Delecluse, H. J., Holley-Guthrie, E. & Kenney, S. C. (2005). Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79, 13993-4003.
Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y. & Tsai, C. H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-22.
Huang, J., Chen, H., Hutt-Fletcher, L., Ambinder, R. F. & Hayward, S. D. (2003). Lytic viral replication as a contributor to the detection of Epstein-Barr virus in breast cancer. J Virol 77, 13267-74.
Huang, J., Liao, G., Chen, H., Wu, F. Y., Hutt-Fletcher, L., Hayward, G. S. & Hayward, S. D. (2006). Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 80, 1098-109.
Imai, K., Slupphaug, G., Lee, W. I., Revy, P., Nonoyama, S., Catalan, N., Yel, L., Forveille, M., Kavli, B., Krokan, H. E., Ochs, H. D., Fischer, A. & Durandy, A. (2003). Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4, 1023-8.
Imai, S., Usui, N., Sugiura, M., Osato, T., Sato, T., Tsutsumi, H., Tachi, N., Nakata, S., Yamanaka, T., Chiba, S. & et al. (1993). Epstein-Barr virus genomic sequences and specific antibodies in cerebrospinal fluid in children with neurologic complications of acute and reactivated EBV infections. J Med Virol 40, 278-84.
Jenkins, P. J., Binne, U. K. & Farrell, P. J. (2000). Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol 74, 710-20.
Jenner, R. G., Alba, M. M., Boshoff, C. & Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75, 891-902.
Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. & Kieff, E. (2004). Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A 101, 16286-91.
Joseph, A. M., Babcock, G. J. & Thorley-Lawson, D. A. (2000). EBV persistence involves strict selection of latently infected B cells. J Immunol 165, 2975-81.
Kavli, B., Sundheim, O., Akbari, M., Otterlei, M., Nilsen, H., Skorpen, F., Aas, P. A., Hagen, L., Krokan, H. E. & Slupphaug, G. (2002). hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277, 39926-36.
Ko, R. & Bennett, S. E. (2005). Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair (Amst) 4, 1421-31.
Kohzaki, H. & Murakami, Y. (2005). Transcription factors and DNA replication origin selection. Bioessays 27, 1107-16.
Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W. & Reed, J. C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53, 4701-14.
Krokan, H. E., Drablos, F. & Slupphaug, G. (2002). Uracil in DNA--occurrence, consequences and repair. Oncogene 21, 8935-48.
Krokan, H. E., Standal, R. & Slupphaug, G. (1997). DNA glycosylases in the base excision repair of DNA. Biochem J 325 ( Pt 1), 1-16.
Kudoh, A., Daikoku, T., Sugaya, Y., Isomura, H., Fujita, M., Kiyono, T., Nishiyama, Y. & Tsurumi, T. (2004). Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication. J Virol 78, 104-15.
Kudoh, A., Fujita, M., Kiyono, T., Kuzushima, K., Sugaya, Y., Izuta, S., Nishiyama, Y. & Tsurumi, T. (2003). Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol 77, 851-61.
Kudoh, A., Fujita, M., Zhang, L., Shirata, N., Daikoku, T., Sugaya, Y., Isomura, H., Nishiyama, Y. & Tsurumi, T. (2005). Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280, 8156-63.
Kunkel, T. A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82, 488-92.
Laichalk, L. L. & Thorley-Lawson, D. A. (2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-307.
Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P. P., Puvion, E., Freemont, P. & de The, H. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193, 1361-71.
Laux, G., Freese, U. K., Fischer, R., Polack, A., Kofler, E. & Bornkamm, G. W. (1988). TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162, 503-7.
Lee, S. K. & Longnecker, R. (1997). The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J Virol 71, 4092-7.
Lehman, I. R. & Boehmer, P. E. (1999). Replication of herpes simplex virus DNA. J Biol Chem 274, 28059-62.
Levitsky, V. & Masucci, M. G. (2002). Manipulation of immune responses by Epstein-Barr virus. Virus Res 88, 71-86.
Liao, G., Huang, J., Fixman, E. D. & Hayward, S. D. (2005). The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J Virol 79, 245-56.
Liao, G., Wu, F. Y. & Hayward, S. D. (2001). Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments. J Virol 75, 8792-802.
Lilley, C. E., Carson, C. T., Muotri, A. R., Gage, F. H. & Weitzman, M. D. (2005). DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A 102, 5844-9.
Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-27.
Lin, J. C., Wang, W. Y., Chen, K. Y., Wei, Y. H., Liang, W. M., Jan, J. S. & Jiang, R. S. (2004). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350, 2461-70.
Lin, W. C., Lin, F. T. & Nevins, J. R. (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15, 1833-44.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-15.
Liu, M. T., Chang, Y. T., Chen, S. C., Chuang, Y. C., Chen, Y. R., Lin, C. S. & Chen, J. Y. (2005). Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 24, 2635-46.
Liu, M. T., Chen, Y. R., Chen, S. C., Hu, C. Y., Lin, C. S., Chang, Y. T., Wang, W. B. & Chen, J. Y. (2004). Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23, 2531-9.
Liu, M. Y., Chang, Y. L., Ma, J., Yang, H. L., Hsu, M. M., Chen, C. J., Chen, J. Y. & Yang, C. S. (1997). Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52, 262-9.
Liu, M. Y., Chou, W. H., Nutter, L., Hsu, M. M., Chen, J. Y. & Yang, C. S. (1989). Antibody against Epstein-Barr virus DNA polymerase activity in sera of patients with nasopharyngeal carcinoma. J Med Virol 28, 101-5.
Liu, M. Y., Shih, Y. Y., Li, L. Y., Chou, S. P., Sheen, T. S., Chen, C. L., Yang, C. S. & Chen, J. Y. (2000). Expression of the Epstein-Barr virus BHRF1 gene, a homologue of Bcl-2, in nasopharyngeal carcinoma tissue. J Med Virol 61, 241-50.
Lo, Y. M., Chan, L. Y., Chan, A. T., Leung, S. F., Lo, K. W., Zhang, J., Lee, J. C., Hjelm, N. M., Johnson, P. J. & Huang, D. P. (1999). Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 59, 5452-5.
Lu, C. C., Wu, C. W., Chang, S. C., Chen, T. Y., Hu, C. R., Yeh, M. Y., Chen, J. Y. & Chen, M. R. (2004). Epstein-Barr virus nuclear antigen 1 is a DNA-binding protein with strong RNA-binding activity. J Gen Virol 85, 2755-65.
Lu, J., Chua, H. H., Chen, S. Y., Chen, J. Y. & Tsai, C. H. (2003). Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256-62.
Luo, B., Wang, Y., Wang, X. F., Liang, H., Yan, L. P., Huang, B. H. & Zhao, P. (2005). Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas. World J Gastroenterol 11, 629-33.
Makarova, O., Kamberov, E. & Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. BioTechniques 29, 970-972.
Marshall, W. L., Yim, C., Gustafson, E., Graf, T., Sage, D. R., Hanify, K., Williams, L., Fingeroth, J. & Finberg, R. W. (1999). Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol 73, 5181-5.
Mauser, A., Holley-Guthrie, E., Zanation, A., Yarborough, W., Kaufmann, W., Klingelhutz, A., Seaman, W. T. & Kenney, S. (2002). The Epstein-Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. J Virol 76, 12543-52.
Mol, C. D., Arvai, A. S., Slupphaug, G., Kavli, B., Alseth, I., Krokan, H. E. & Tainer, J. A. (1995). Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80, 869-78.
Morrison, T. E., Mauser, A., Wong, A., Ting, J. P. & Kenney, S. C. (2001). Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 15, 787-99.
Mullaney, J., Moss, H. W. & McGeoch, D. J. (1989). Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. J Gen Virol 70 ( Pt 2), 449-54.
Nicewonger, J., Suck, G., Bloch, D. & Swaminathan, S. (2004). Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol 78, 9412-22.
Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T. A., Skorpen, F. & Krokan, H. E. (1997). Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res 25, 750-5.
Olsen, L. C., Aasland, R., Krokan, H. E. & Helland, D. E. (1991). Human uracil-DNA glycosylase complements E. coli ung mutants. Nucleic Acids Res 19, 4473-8.
Olsen, L. C., Aasland, R., Wittwer, C. U., Krokan, H. E. & Helland, D. E. (1989). Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. Embo J 8, 3121-5.
Otterlei, M., Warbrick, E., Nagelhus, T. A., Haug, T., Slupphaug, G., Akbari, M., Aas, P. A., Steinsbekk, K., Bakke, O. & Krokan, H. E. (1999). Post-replicative base excision repair in replication foci. Embo J 18, 3834-44.
Parker, B. D., Bankier, A., Satchwell, S., Barrell, B. & Farrell, P. J. (1990). Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339-46.
Paulose-Murphy, M., Ha, N. K., Xiang, C., Chen, Y., Gillim, L., Yarchoan, R., Meltzer, P., Bittner, M., Trent, J. & Zeichner, S. (2001). Transcription program of human herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J Virol 75, 4843-53.
Paulsen, S. J., Rosenkilde, M. M., Eugen-Olsen, J. & Kledal, T. N. (2005). Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79, 536-46.
Pearl, J., Elster, E. & Golocovsky, M. (2002). Nonfunctioning islet cell carcinoma of the pancreas: case report. Am Surg 68, 886-8.
Prichard, M. N., Duke, G. M. & Mocarski, E. S. (1996). Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication. J Virol 70, 3018-25.
Prichard, M. N., Lawlor, H., Duke, G. M., Mo, C., Wang, Z., Dixon, M., Kemble, G. & Kern, E. R. (2005). Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2, 55.
Pulvertaft, J. V. (1965). A Study of Malignant Tumours in Nigeria by Short-Term Tissue Culture. J Clin Pathol 18, 261-73.
Pyles, R. B. & Thompson, R. L. (1994). Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J Virol 68, 4963-72.
Ragoczy, T., Heston, L. & Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-84.
Ragoczy, T. & Miller, G. (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73, 9858-66.
Ramiro, A. R., Jankovic, M., Callen, E., Difilippantonio, S., Chen, H. T., McBride, K. M., Eisenreich, T. R., Chen, J., Dickins, R. A., Lowe, S. W., Nussenzweig, A. & Nussenzweig, M. C. (2006). Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440, 105-9.
Ramiro, A. R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., Muramatsu, M., Honjo, T., Nussenzweig, A. & Nussenzweig, M. C. (2004). AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431-8.
Ranneberg-Nilsen, T., Bjoras, M., Luna, L., Slettebakk, R., Dale, H. A., Seeberg, E. & Rollag, H. (2006). Human cytomegalovirus infection modulates DNA base excision repair in fibroblast cells. Virology 348, 389-97.
Ressing, M. E., Keating, S. E., van Leeuwen, D., Koppers-Lalic, D., Pappworth, I. Y., Wiertz, E. J. & Rowe, M. (2005). Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J Immunol 174, 6829-38.
Rickinson, A. B. & Kieff, E. (2001). Epstin-Barr virus and its replication. In Fields virology, 4th edn, pp. 2575-2627. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Pa, Philadelphia.: Lippincott-Raven.
Rodriguez, A., Jung, E. J., Yin, Q., Cayrol, C. & Flemington, E. K. (2001). Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284, 159-69.
Roizman, B. & Sears, A. E. (2001). Herpes simplex viruses and their replication. In Fields virology, 4th edn, pp. 1795-1842. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Pa, Philadelphia.: Lippincott-Raven.
Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H. & Rickinson, A. B. (1992). Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66, 122-31.
Savva, R., McAuley-Hecht, K., Brown, T. & Pearl, L. (1995). The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487-93.
Savva, R. & Pearl, L. H. (1995). Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex. Nat Struct Biol 2, 752-7.
Seal, G. & Sirover, M. A. (1986). Physical association of the human base-excision repair enzyme uracil DNA glycosylase with the 70,000-dalton catalytic subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A 83, 7608-12.
Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J. & Aiyar, A. (2004). The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol 78, 11487-505.
Segouffin-Cariou, C., Farjot, G., Sergeant, A. & Gruffat, H. (2000). Characterization of the epstein-barr virus BRRF1 gene, located between early genes BZLF1 and BRLF1. J Gen Virol 81, 1791-9.
Seto, E., Yang, L., Middeldorp, J., Sheen, T. S., Chen, J. Y., Fukayama, M., Eizuru, Y., Ooka, T. & Takada, K. (2005). Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Med Virol 76, 82-8.
Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3, 155-68.
Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y. & Takada, K. (1994). Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burki
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31327-
dc.description.abstractEB病毒已被報導與淋巴瘤與鼻咽癌等人類惡性腫瘤有密切相關。過去認為EB病毒潛伏期基因產物與腫瘤的發生有關,而最近的研究顯示當EB病毒活化進入溶裂期時,可能參與了致病的過程。然而針對大多數EB病毒溶裂期基因的表現或功能的瞭解,仍相當有限。
為了進一步瞭解所有溶裂期基因的表現及其可能參與病毒DNA複製的機制。在本論文中,建立了EB病毒DNA微陣列,系統性的分析在Akata細胞利用抗G型免疫球蛋白,活化病毒進入溶裂期時,病毒基因在不同時間點表現的情形。並依表現模式將基因分為不同的表現群,發現潛伏期基因EB病毒核蛋白EBNA2、EBNA3A、EBNA3C,會隨著病毒活化進入溶裂期而增加。另外,在Akata細胞中加入DNA聚合酶抑制劑PAA,或利用化合物刺激Raji細胞,分析在EB病毒DNA無法複製時,病毒基因表現的情況,意外發現某些被推測為病毒DNA複製完成才會表現之晚期表現基因,卻在EB病毒活化進入溶裂期的早期開始表現,推測這些基因可能具有未知的生物功能。此外將EB病毒特早期表現之轉活化因子Rta轉染進Raji細胞,以及在帶有EB病毒之上皮細胞NA中,利用干擾性RNA抑制另一轉活化因子Zta的蛋白表現,藉以分析Rta轉活化之病毒基因。微陣列分析所得之結果,並經由北方墨漬法、轉錄聚合酶連鎖反應及報導基因表現分析得到證實。本論文分析並整理之資料,對於EB病毒溶裂期基因表現之調控,提供更進一步的瞭解。
根據微陣列之結果,EB病毒複製相關酵素分為兩大表現群,推測其分別參與了EB病毒早期以θ形式,及晚期以Rolling circle形式的複製過程。其中在第二表現群的基因中,BKRF3已被證明在共同轉染的實驗中,能促進帶有OriLyt片段質體的複製。然而對於BKRF3表現之調控及生物功能仍不清楚,經由對BKRF3胺基酸之分析,推測具有尿嘧啶糖苷酶之活性。尿嘧啶糖苷酶參與在DNA修復系統,負責移除DNA上不該存在之尿嘧啶,以確保DNA的正確性。在本論文中,由大腸桿菌所表現並純化之His-BKRF3的重組蛋白的生化特性和大腸桿菌及人類細胞表現的尿嘧啶糖苷酶均很相似。例如,His-BKRF3自單股DNA中移除尿嘧啶之效率高於自雙股DNA之移除,且噬菌體表現的尿嘧啶糖苷酶抑制蛋白(Ugi)能抑制BKRF3具有的尿嘧啶糖苷酶活性。另外在Rifampicin及Nalidixic acid的抗藥性突變分析中,BKRF3的表現能使得失去尿嘧啶糖苷酶基因的大腸桿菌突變種,恢復成具有野生型大腸桿菌之表現型。本論文也利用專一性偵測BKRF3的抗體,探討EB病毒在上皮細胞及B細胞活化進入溶裂期時,BKRF3所表現的時間點,及在宿主細胞內所表現的位置。其中BKRF3的表現,主要是透過轉活化因子Rta的調控,同時我們也發現,利用干擾性RNA抑制BKRF3蛋白的表現時,EB病毒DNA的合成受到一些的限制。當細胞或病毒所表現的尿嘧啶糖苷酶的活性被Ugi抑制時,或者細胞之UNG2的表現受到干擾性RNA抑制時,均嚴重影響EB病毒DNA的複製。經由上述的實驗結果,本論文證明了BKRF3不論在試管內或體內皆具有尿嘧啶糖苷酶的活性,並推測尿嘧啶糖苷酶可藉由參與DNA複製及修復機制,進而促進病毒DNA的合成。
zh_TW
dc.description.abstractEpstein-Barr virus (EBV) is a gamma herpesvirus which has been demonstrated to be associated with various human malignancies such as Burkitt’s lymphoma and nasopharynegeal carcinoma (NPC). Although EBV latent status was documented in most tumors, recent observations indicate that during the process of carcinogenesis in some malignancies EBV reactivation does occur. However, current knowledge regarding EBV lytic gene expression and function is far behind that of latent genes.
In order to monitor simultaneously the genome-wide gene expression control, an EBV DNA array was generated to analyze the pattern of transcription of the entire EBV genome under various conditions. Firstly, a complete set of temporal expression clusters of EBV genes was displayed by analyzing the array data of anti-IgG induced Akata cells. A series of genes with unknown function were respectively assigned to various clusters, In addition, increasing expression of latent genes, including EBNA2, EBNA3A and EBNA 3C, was observed during virus replication. Secondly, gene expression independent of viral DNA replication was analyzed in PAA blocked Akata cells and in chemically induced Raji cells. Several genes with presumed late functions were unexepectedly found to be expressed with early kinetics and independent of viral DNA replication, suggesting possible novel functions for these genes. Finally, the EBV array was used to identify Rta responsive gene expression in Raji cells, and in the EBV positive epithelial cells NA, using a Zta siRNA strategy. The array data were confirmed by northern blotting, RT-PCR and reporter assays. All the information here thus provides a better understanding of the control of EBV lytic gene expression.
According to microarray results, the virally encoded DNA replication associated enzymes were found to be catalogued into two clusters, suggesting their participation at early theta-form replication and late rolling-circle replication, respectively. Among the genes expressed in the second cluster, BKRF3 was previously demonstrated to enhance the oriLyt-dependent DNA replication in a co-transfection replication assay. However, the expression and function of BKRF3 have not yet been characterized. Based on its amino acid sequence, the putative Uracil-DNA glycosylase (UDG or UNG), BKRF3 belongs to the UNG family of proteins which are the primary DNA repair enzymes responsible for the removal of inappropriate uracil from DNA. Recent studies further suggested that the nuclear human UNG2, and the UDGs of large DNA viruses, may coordinate with their DNA polymerase accessory factors to enhance DNA replication. In the second part of this study, His-BKRF3 was expressed in bacteria and purified for biochemical analysis. Similar to the E. coli and human UNG enzymes, His-BKRF3 excised uracil from single-stranded DNA more efficiently than from double-stranded DNA and was inhibited by the purified bacteriophage PBS1 UNG inhibitor, Ugi. In addition, BKRF3 was able to complement an E. coli ung mutant in rifampicin and nalidixic acid resistance mutator assays. The expression kinetics and subcellular localization of BKRF3 products were detected in EBV positive lymphoid and epithelial cells using BKRF3 specific mouse antibodies. Expression of BKRF3 is mainly regulated by the immediate early transcription activator Rta. The efficiency of EBV lytic DNA replication was slightly affected by BKRF3 siRNA, whereas cellular UNG2 siRNA or inhibition of cellular and viral UNG activities by expressing Ugi repressed EBV lytic DNA replication. Taken together, I demonstrated the UNG activity of BKRF3 in vitro and in vivo and suggest that UNGs may participate in DNA replication or repair and thereby promote efficient production of viral DNA.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:43:17Z (GMT). No. of bitstreams: 1
ntu-95-D91445002-1.pdf: 11062642 bytes, checksum: 1e0eb7b0f416e0e66195801a605e4d48 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsPreface …………………………………………………………………………………………………………… i
中文摘要………………………………………………………………………………………………………… ii
Abstract ……………………………………………………………………………………………… iii
Contents ………………………………………………………………………………………………………… v
Chapter 1: Lytic Replication of Epstein-Barr Virus ……………………..……………………......... 1
1.1 Background……………………………………………………………………………………... 1
1.2 Reactivation and expression of lytic genes…………………………………………………….. 2
1.3 Cell cycle control and viral DNA replication…………………………………………………... 3
1.4 Interactions among viral DNA replication proteins and cellular factors………………………. 6
1.5 Switch from theta replication to rolling-circle replication…………………………………….. 9
1.6 Lytic expression of latent genes ………………………………………………………………. 10
1.7 Evasion of host defense………………………………………………………………...…....... 10
1.8 Conclusions………………………………………………………………………………......... 11
1.9 Future perspective……………………………………………………………………….......... 12
Chapter 2: Genome-Wide Transcription Program and Expression of the Rta
Responsive Gene of Epstein-Barr Virus ……………………………..………….......... 16
2.1 Introduction……………………………………………………………………………......... 16
2.2 Materials and methods………………………………………………………………….........17
2.2.1 Cell culture……………………………………………………………………….…….…... 17
2.2.2 Transfection………………………………………………………………………….….….. 18
2.2.3 RNA preparation……………………………………………………………………….…… 18
2.2.4 Construction of EBV microarray membranes……………………………………….……... 18
2.2.5 Biotinylation of cDNA probe and microarray analysis……………………………….…..... 19
2.2.6 Data processing………………………………………………………………..……………. 20
2.2.7 Northern blot analyses……………………………………………………………..……….. 20
2.2.8 RT-PCR……………………………………………………………………………..………. 20
2.2.9 Reporter assay…………………………………………………………………….……….... 20
2.3 Results………………………………………………………………………………………... 21
2.3.1 Construction, specificity and reproducibility of the NTU_EBVArray……………………... 21
2.3.2 The genome-wide gene expression cascade in anti-human IgG induced Akata cells…….... 22
2.3.3 Northern blot analysis………………………………………………………………….…... 23
2.3.4 Hierarchical cluster analysis of EBV gene expression……………………………….……. 24
2.3.5 Identification of viral DNA replication-independent gene expression…………….…….… 25
2.3.6 Reactivation of EBV induces increasing expression of latent genes………………….….... 26
2.3.7 Identification of genes that are regulated specifically by Rta in Raji cells……………........ 27
2.4 Discussion……………………………………………………………………………............ 28
Chapter 3: Characterization of the uracil-DNA glycosylase activity of Epstein-Barr
virus BKRF3 and its role in lytic viral DNA replication……………….................. 33
3.1 Introduction……………………………………………………………………….……….... 33
3.2 Materials and methods…………………………………………………………….….….… 36
3.2.1 Constructs and strains…………………………………………………………….…….….. 36
3.2.2 Mutator assay…………………………………………………………………………........ 37
3.2.3 DNA glycosylase assay……………………………………………………………….…… 38
3.2.4 Purification of bacterially expressed recombinant BKRF3………………………….…….. 39
3.2.5 Antibodies………………………………………………………………………………….. 39
3.2.6 Cell culture and induction of viral lytic cycle………………………………………....…... 39
3.2.7 Indirect immunofluorescence……………………………………………………….….….. 40
3.2.8 Subcellular fractionation……………………………………………..………………..….. 40
3.2.9 Transfection…………………………………………………………………..…………... 40
3.2.10 Detection and quantification of EBV DNA……………………………………..………. 41
3.3 Results……………………………………………………………………………….....….. 41
3.3.1 EBV BKRF3 encodes a putative conserved uracil-DNA glycosylase…………..……….. 41
3.3.2 EBV BKRF3 complements an E. coli ung mutant in vivo…………………………..…… 42
3.3.3 Expression and purification of BKRF3 UNG………………………………………….… 44
3.3.4 BKRF3 prefers uracil-containing ssDNA substrates……………………………………... 44
3.3.5 Expression of BKRF3 in EBV-positive cells upon induction of the lytic cycle………...…46
3.3.6 BKRF3 is expressed in both the nucleus and cytoplasm of EBV positive and EBV
negative cells……………………………………………………………………..…........ 46
3.3.7 BKRF3 contributes to EBV lytic replication……………………………………..…....... 47
3.3.8 Cellular UNG2 contributes to EBV lytic replication………………………………......... 48
3.3.9 Requirement of UNG activity in EBV lytic replication…………………………….….... 48
3.4 Discussion…………………………………………………………………………….…... 49
Tables and Figures………………………………………………………………………………....……. 55
References………………………………………………………………………………………..….…....... 85
Appendix……………………………………………………………………………………………………100
Appendix I Information of EBV microarray………………………………………………….. 100
Appendix II Experimental protocols………………………………………………………… 102
Appendix III Curriculum Vitae …………………………………………………………… 111
dc.language.isoen
dc.titleEB病毒溶裂期基因表現及BKRF3 DNA-尿嘧啶糖苷酶功能之探討zh_TW
dc.titleEpstein-Barr Virus Genome-Wide Gene Expression Profile and the Function of BKRF3 Uracil-DNA Glycosylase in Viral Lytic Replicationen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳振陽(Jen-Yang Chen),蔡錦華(Ching-Hwa Tsai),劉世東(Shih-Tung Liu),李財坤(Tsai-Kun Li),林素芳(Su-Fang Lin)
dc.subject.keywordEB病毒,溶裂期基因,BKRF3 DNA-尿嘧啶糖&#33527,&#37238,zh_TW
dc.subject.keywordEpstein-Barr Virus,lytic gene expression,BKRF3 Uracil-DNA Glycosylase,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2006-11-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
10.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved