請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王瑜 教授 | |
| dc.contributor.author | Yen-Chen Lin | en |
| dc.contributor.author | 林彥成 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:43:09Z | - |
| dc.date.available | 2016-01-01 | |
| dc.date.copyright | 2007-01-05 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-12-01 | |
| dc.identifier.citation | [1] Griffith. J. S.; Orgel, L. E. Quarterly Review 1957, XI, 381.
[2] Stewart, R. F. J. Chem. Phys. 1973, 58, 1668-1676. [3] Hansen, N. K.; Coppens, P. Acta Cryst. 1978, A34, 909-921. [4] Coppens, P. X-ray Charge Densities and Chemical Bonding; IUCr, Oxford University Press: 1997. [5] Holladay, A.; Leung, P.; Coppens, P. Acta Cryst. 1983, A39, 377. [6] Bader, R. F. W. Atom in Moleculers. A Quantum Theory: Oxford University Press: New York, 1990. [7] Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 13429. [8] Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360. [9] Bianchi, R.; Gervasio G.; Marabello, D. Acta Cryst. 2001, B57, 638. [10] Macchi, P.; Garlaschelli, L.; Sironi, A. J. Am. Chem. Soc. 2002, 124, 14173 [11] Lee, C.-R.; Wang, C.-C.; Chen, K.-C.; Lee, G.-H.; Wang, Y. J. Phys. Chem. A 1999, 103, 156. [12] Macchi, P.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1998, 120, 1447. [13] Fomitchev, D. V.; Furlani, T. R.; Coppens, P. Inorg. Chem. 1998, 37, 1519. [14] Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2002, 117(12), 5529. [15] Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. [16] Mallinson, P. R.; Smith, G. T.; Wilson, C. C.; Grech, E.; Wozniak, K. J. Am. Chem. Soc. 2003, 125, 4259. [17] Kubicki, M.; Borowiak, T.; Dutkiewicz, C.; Souhassou, M.; Jelsch, C.; Lecomte, C. J. Phys. Chem. B 2002, 106, 3706. [18] Ellena, J.; Goeta, A. E.; Howard, J. A. K.; Punte, G. J. Phys. Chem. A 2001, 105, 8696. [19] Madsen, G. K. H.; Iversen, B. B.; Larsen, F. K.; Kapon, M.; Reisner, G. M.; Herbstein, F. H. J. Am. Chem. Soc. 1998, 120, 10040. [20] Madsen, D.; Flensburg, C.; Larsen, S. J. Phys. Chem. A 1998, 102, 2177. [21] Mallinson, P. R.; Wozniak, K.; Smith, F. T.; McCormack, K. L. J. Am. Chem. Soc. 1997, 119, 11502. [22] Hsu, B.; Schlemper, E. O. Acta Cryst. 1980, B36, 3017. [23] Lammertsma, K.; Ohwada, T. J. Am. Chem. Soc. 1996, 118, 7247. [24] Zhurova, E. A.; Martin, A.; Pinkerton, A. A. J. Am. Chem. Soc. 2002, 124, 8741. [25] Iversen, B. B.; Larsen, F. K.; Pinkerton, A. A.; Martin, A.; Darovsky, A; Reynolds, P. A. Acta Cryst. 1999, B55, 363. [26] Claiser, N.; Souhassou, M.; Lecomte, C.; Gillon, B.; Carbonera, C.; Caneschi, A.; Dei, A.; Gatteschi. D.; Bencini, A.; Pontillon, Y.; Lelièvre-Berna, E. J. Phys. Chem. B 2005, 109, 2723. [27] Pillet, S.; Wu, G.; Kulsomphob, V.; Harvey, B. G.; Ernst, R. D.; Coppens, P. J. Am. Chem. Soc. 2003, 125, 1937. [28] Poulsen, R. D.; Bentien, A.; Graber, T.; Iversen, B. B. Acta Cryst. 2004, A60, 382. [29] Poulsen, R. D.; Bentien, A.; Chevalier, M.; Iversen, B. B. J. Am. Chem. Soc. 2005, 127, 9156. [30] Coppens, P.; Abramov, Y.; Carducci, M.; Korjov, B.; Novozhilova, I.; Alhambra, C.; Pressprich, M. R. J. Am. Chem. Soc. 1999, 121, 2585. [31] Dahaoui, S.; Pichon-Pesme, V.; Howard, J. A. K.; Lecomte, C. J. Phys. Chem. A 1999, 103, 6240. [32] Li, X.; Wu, G.; Abramov, Y. A.; Volkov, A.; Coppens, P. PNAS 2002, 99(19), 12132. [33] Pichon-Pesme, V.; Lachekar, H.; Souhassou, M.; Lecomte, C. Acta Cryst. 2000, B56, 728. [34] Flaig, R.; Koritsanszky, T.; Dittrich, B.; Wagner, A; Luger, P. J. Am. Chem. Soc. 2002, 124, 3407. [35] Ghermani, N.-E.; Bouhmaida, N.; Lecomte, C.; Papet, A.-L.; Marsura, A. J. Phys. Chem. 1994, 98, 6287. [36] Overgaard, J.; Iversen, B. B.; Palli, S. P.; Timco, G. A.; Gerbeleu, N. V.; Singerean, L.; Larsen, F. K. Chem. Eur. J. 2002, 8, 2775. [37] Lippmann, T.; Blaha, P.; Andersen, N. H.; Poulsen, H. F.; Wolf, T.; Schneider, J. R.; Schwarz, K. H. Acta Cryst. 2003, A59, 437. [38] (a) Koch, W.; Holthausen, M. C. A chemist’s guide to density functional theory, 1st edn. 2000, Wiley-VCH, Weinheim. (b) Parr, R. G.; Yang, W. Density functional theory of atoms and molecules, 1st ed. 1989, Oxford University Press, New York. (c) Slater J. C. Phys. Rev. 1951, 81, 385. [39] (a) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. (b) Baerends, E. J.; Gritsenko, O. V. J Phys Chem A 1997, 101,5383. (c) Jones, R. O.; Gunnarson, O. Rev. Mod. Phys. 1989, 61, 689. [40] (a) Jayatilaka, D.; Grimwood, D. J. Acta Cryst. 2001, A57, 76. (b) Grimwood, D. J.; Jayatilaka, D. Acta Cryst. 2001, A57, 87. [41] Koritsanszky, T. S.; Coppens, P. Chem. Rev. 2001, 101, 1583. [42] Macchi, P.; Sironi, A. Coord. Chem. Rev. 2003, 238-239, 383. [43] Coppens, P.; Iversen, B. B.; Larsen, F. K. Coord. Chem. Rev. 2005, 249, 179. [44] Merino, G.; Vela, A.; Heine, T. Chem. Rev. 2005, 105, 3812. [45] D'Angelo, P.; Roscioni, O. M.; Chillemi, G.; Longa, S. D.; Benfatto, M. J. Am. Chem. Soc. 2006, 128(6), 1853. [46] Bonnitcha, P. D.; Hall, M. D.; Underwood, C. K.; Foran, G. J.; Zhang, M.; Beale, P. J.; Hambley, T. W. J. Inorg. Biochem. 2006, 100, 963. [47] Khalil, M.; Marcus, M. A.; Smeigh, A. L.; McCusker, J. K.; Chong, H. H. W.; Schoenlein, R. W. J. Phys. Chem. A 2006, 110, 38. [48] Top. Curr. Chem. 2004, 233-235 (special issues (vol. 233-235) of Spin Crossover in Transition Metal Compounds) edited by Gütlich P.; Goodwin H. A.. [49] Kahn, O.; Martinez, C. J. Science 1998, 279, 44. [50] Sato, O. Acc. Chem. Res. 2003, 36, 692. [51] Bousseksou, A.; Molnár, G..; Demont, P.; Menegotto, F. J. Mater. Chem. 2003, 13, 2069. [52] Gűtlich, P.; Garcia, Y.; Goodwin, H. A. Chem. Soc. Rev. 2000, 29, 419. [53] Real, J. A.; Gaspa, A. B.; Niel, V.; Muñoz, M. C. Coord. Chem. Rev. 2003, 236(1-2), 121. [54] Real, J. A.; Gaspa, A. B.; Niel, V.; Muñoz, M. C. Dalton Trans. 2005, 2062. [55] Bethe. H. Ann. Physik. 1929, 3, 133. [56] Sheu, H. S.; Wu J. C.; Wang, Y. Acta Cryst. 1996, B52, 458. [57] Abramov, Y. A.; Volkov, A.; Coppens, P. Chem. Phys. Lett. 1999, 311, 81. [58] Koritsanszky, T.; Howard, S. T.; Richter, T.; Macchi, P.; Volkov, A.; Gatti, C.; Mallinson, P. R.; Farrugia, L. J.; Su, Z.; Hansen, N. K. XD – A Computer Program Package for Multipole Refinement and Topological Analysis of Charge Densities from Diffraction Data, 2003. URL: http://xd.chem.buffalo.edu. [59] Saunders, V. R.; Dovesi, R.; Roetti, C.; Causà, M.; Harrison, N. M.; Orlando, R.; Zicovich-Wilson, C. M. CRYSTAL98 Users' Manual 1999. University of Torino, Torino, Italy. [60] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montornery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Martin, R. L.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Gomperts, R.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, N.; Conzalez, C.; Pople, J. A.; Gaussian03, Gaussian Inc., Pittsburgh, PA, 2003. [61] Abramov, Y. A.; Volkov, A. V.; Coppens, P. Chem. Phys. Lett. 1999, 311, 81. [62] http://www.nonius.com/KappaCCD/manuals/collect/index.html [63] (a) Duisenberg, A. J. M.; Kroon-Batenburg L. M. J.; Schreurs, A. M. M. J. Appl. Cryst. 2003, 36, 220. (b) www.eval14.com [64] G. M. Sheldrick, SADABS, Program for Absorption Corrections for Area Detector Data, University of Göttingen, Germany, 1997. [65] Sheldrick, G. M. (XPREP in) SHELXTL 5.1/NT. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; Siemens Analytical X-ray Instruments: Madison, Wisconsin, USA, 1997. [66] Wei, Y.-G.; Zhang, S.-W.; Shao, M.-C.; Liu, Q.; Tang, Y.-Q. Polyhedron 1996, 15, 4303. [67] Roetti, C.; Clementi, E. J. Chem. Phys. 1974, 60, 4725. [68] Becke, A. D. J. Chem. Phys. 1993, 98, 5648. [69] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. [70] Maji, T. K.; Sain, S.; Mostafa, G.; Lu, T.-H.; Ribas, J.; Monfort, M.; Chaudhuri, N. R. Inorg. Chem. 2003, 42, 709. [71] (a) Mackrodt, W. C.; Simson, E. A.; Harrison, N. M. Surface Science 1997, 384, 192. (b) http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html [72] (a) http://www.tcm.phy.cam.ac.uk/~mdt26/crystal_refs.html (b) http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html [73] (a) Gatti, C.; Bianchi, R. Atti XXVI Congresso Nazionale Associazione Italiana di Cristallografia, Alessandria, Italy, 1996, 139. (b) Gatti C. TOPOND98 User's Manual. 1999, CNR-ISTM, Milano, Italy. [74] (a) Alba, J. C. O.; Jané, C. B. Departament de Química Física i Inorgànica, Universitat Rovira i Virgili PI. Imperial Tarraco, 1, 43005 - Tarragona (Spin). (b) http://www.quimica.urv.es/XAIM/ [75] (a) K.-S., K. Isr. J. Chem. 1977, 16, 132. (b) Volkov, A.; Abramov, Y. A.; Coppens, P. Acta Cryst. 2001, A57, 272. [76] Abramov, Y. A. Acta Cryst. 1997, A53, 264. [77] Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170. [78] Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2002, 117(12), 5529. [79] Gabe, E. J.; Page, Y. Le; Charland, J.-P.; Lee, F. L.; White, P. S. J. Appl. Cryst. 1989, 22, 384. [80] Allen, F. H. Acta Cryst. 2002, B58, 380. [81] Lis, T.; Matuszewski, J. Acta Cryst. 1979, B35, 2212. [82] Lis, T.; Matuszewski, J. Acta Cryst. 1977, B33, 1943. [83] Lis, T.; Matuszewski, J. Pol. J. Chem. 1980, 54, 169. [84] Lis, T.; Matuszewski, J. J. Chem. Soc. Dalton Trans. 1980, 996. [85] Lenstra, A. T. H.; Kataeva, O. N. Acta Cryst. 2001, B57, 497. [86] Saadeh, S. M.; Trojan, K. L.; Kampf, J. W.; Hatfield, W. E.; Pecoraro, V. L. Inorg. Chem. 1993, 32, 3034. [87] de Muro, I. G.; Insausti, M.; Lezama, L.; Urtiaga, M. K.; Arriortua, M. I.; Rojo, T. J. Chem. Soc. Dalton Trans. 2000, 3360. [88] Brown, I. D.; Altermatt, D. Acta Cryst. 1985, B41, 244. [89] (a) Blessing, R. H. Cryst. Rev. 1987, 1, 3. (b) Blessing, R. H. J. Appl. Cryst. 1989, 22, 396. (c) Blessing, R. H. J. Appl. Cryst. 1997, 30, 421. [90] C.K. Johnson and H.A. Levy, International Tables for X-ray Crystallography, Vol. IV, 311-336, Birmingham: Kynoch Press, 1974. [91] Hirshfeld, F. L. Acta Cryst. 1976, A32, 239. [92] Marabello, D.; Bianchi, R.; Gervasio, G.; Cargnoni, F. Acta Cryst. 2004, A60, 494. [93] Pillet, S.; Souhassou, M.; Mathonière, C.; Lecomte, C. J. Am. Chem. Soc. 2004, 126, 1219. [94] Poulsen, R. D.; Bentien, A.; Graber, T.; Iversen, B. B. Acta Cryst. 2004, A60, 382. [95] Poulsen, R. D.; Bentien, A.; Chevalier, M.; Iversen, B. B. J. Am. Chem. Soc. 2005, 127, 9156. [96] Stevens, E. D.; Coppens, P. Acta Cryst. 1980, B36, 1864. [97] Stevens, E. D. Acta Cryst. 1980, B36, 1876. [98] Wang, Y.; Tsai, C. J.; Liu, W. L. Acta Cryst. 1985, B41, 131. [99] Martin A; Pinkerton, A. A. Acta Cryst. 1998, B54, 471. [100] Farrugia, L. J.; Evans, C. J. Phys. Chem. A 2005, 109, 8834. [101] Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360. [102] Overgaard, j.; Larsen, F. K.; Schiøtt, B.; Iversen, B. B. J. Am. Chem. Soc. 2003, 125, 11088. [103] Lee, J.-J.; Lee, G.-H.; Wang, Y. Chem. Eur. J. 2002, 8(8), 1821. [104] McWeeny, R. Rev. Mod. Phys. 1960, 32, 335. [105] Bader, R. F. W. Chem. Rev. 1991, 91, 893. [106] Hwang, T.-S.; Wang, Y. J. Phys. Chem. A 1998, 102, 3726. [107] Lee, C.-R.; Tan, L.-Y.; Wang, Y. J. Phys. Chem. Solids 2001, 62, 1613. [108] Espinonsa, E.; Lecomte, C.; Molins, E. Chem. Phys. Lett. 1999, 300, 745. [109] Holland, J. M.; McAllister, J. A.; Kilner, C. A.; Pett, M. T.; Bridgeman, A. J.; Halcrow, M. A. J. Chem. Soc, Dalton Trans. 2002, 548. [110] Roux, C.; Zarembowitch, J.; Callois, B.; Granier, T.; Claude, R. Inorg. Chem. 1994, 33, 2273. [111] Boillot, M.-L.; Roux, C.; Audière, J.-P.; Dausse, A.; Zarembowitch, J. Inorg. Chem. 1996, 35, 3975. [112] Garcia, Y.; Niel, V.; Muñoz, M. C.; Real, J. A. Top. Curr. Chem. 2004, 233, 229. [113] Zhong, Z.-J.; Tao, J.-Q.; Yu, Z.; Dun, C.-Y.; Liu, Y.-J.; You, X.-Z. J. Chem. Soc. Dalton Trans. 1998, 327. [114] Garcia, Y.; Ksenofontov, V.; Gűtlich, P. C. R. Acad. Sci, Paris, Chimie/Chemistry 2001, 4, 227. [115] Money, V. A.; Elhaïk, J.; Evans, I. R.; Halcrow, M. A.; Howard, J. A. K. J. Chem. Soc. Dalton Trans. 2004, 65. [116] Sugiyarto, K. H.; Craig, D. C.; Rae, A. D.; Goodwin, H. A. Aust. J. Chem. 1988, 41, 1645. [117] Sugiyarto, K. H.; Craig, D. C.; Rae, A. D.; Goodwin, H. A. Aust. J. Chem. 1993, 46, 1269. [118] Sugiyarto, K. H.; Craig, D. C.; Rae, A. D.; Goodwin, H. A. Aust. J. Chem. 1994, 47, 869. [119] Sugiyarto, K. H.; Scudder, M. L.; Craig, D. C.; Goodwin, H. A. Aust. J. Chem. 2000, 53, 755. [120] Sugiyarto, K. H.; Weitzner, K.; Craig, D. C.; Goodwin, H. A. Aust. J. Chem. 1997, 50, 869. [121] Gütlich, P. Struct. Bonding (Berlin) 1981, 44, 83. [122] Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762. [123] Vreugdenhil, W.; Gorter, S.; Haasnoot, J. G.; Reedijk, J. Polyhedron 1985, 4, 1769. [124] Vreugdenhil, W.; Van Diemen, J. H.; De Graaff, R. A. G.,; Haasnoot, J. G.; Reedijk, J. Polyhedron 1990, 9, 2971. [125] Pillet, S.; Hubsch, J.; Lecomte, C. Eur. Phys. J. B 2004, 38, 541. [126] Martin, J.-P.; Zarembowitch, J.; Dworkin, A.; Haasnoot, J. G.; Godjovi, E. Inorg. Chem. 1994, 33, 2617. [127] Zilverentant, C. L.; van Albada, G. A.; Bousseksou, A.; Haasnoot, J. G.; Reedijk, J. Inorg. Chim. Acta 2000, 303, 287. [128] Vreugdenhil, W.; Haasnoot, J. G.; Kahn, O.; Thuery, P.; Reedijk, J. J. Am. Chem. Soc. 1987, 109, 5272. [129] Ozarowski, A.; Shunzhong, Y.; McGarvey, B. R.; Mislankar, A.; Drake, J. E. Inorg. Chem. 1991, 30, 3167. [130] Morscheidt, W.; Jeftić, J.; Codjovi, E.; Linares, J.; Bousseksou, A.; Constant-Machado, H.; Varret, F. Meas. Sci. Technol. 1998, 9, 1311. [131] Jeftić, J.; Menéndez, N.; Wack, A.; Codjovi, E.; Linarès, J.; Goujon, A.; Hamel, G.; Klotz, S.; Syfosse, G; Varret, F. Meas. Sci. Technol. 1999, 10, 1059. [132] Codjovi, E.; Menéndez, N.; Jeftic, J.; Varret, F. C. R. Acad. Sci. Paris, Chimie/Chemistry 2001, 4, 181-188. [133] Pillet, S.; Legrand, V.; Souhassou, M.; Lecomte, C. Phys. Rev. B 2006, 74, 1-1. [134] Martin, J.-P.; Zarembowitch, J.; Bousseksou, A.; Dworkin, A.; Haasnoot, J. G.; Godjovi, E. Inorg. Chem. 1994, 33, 6325. [135] Legrand, V.; Pillet, S.; Souhassou, M.; Lugan, N.; Lecomte, C. J. Am. Chem. Soc. 2006, 128(42), 13921. [136] Garcia, Y.; Ksenofontov, V.; Levchenko, G.; Schmitt, G.; Gűtlich, P. J. Phys. Chem. B 2000, 104(21), 5045. [137] Garcia, Y.; Kahn, O.; Rabardel, L.; Chansou, B.; Salmon, L.; Tuchagues, J. P. Inorg. Chem. 1999, 38, 4664. [138] Jakobi, R.; Spiering, H.; Wiehl, L.; Gmelin, E.; Gűtlich, P. Inorg. Chem. 1998, 27, 1823. [139] Buchen, T.; Poganiuch, P.; Gűtlich, P. J. Chem. Soc. Dalton. Trans. 1994, 2285. [140] E.Sayers, D.; Bunker, B. A. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Koningsberger, D. C.; Prins, R. E. John Wiley & Sons: NewYork, 1988, 211. [141] Asakura, A. X-Ray Absorption Fine Structure for Catalysts and Surface; Iwasawa, Y. E. World Scientific: Singapore 1996, 34. [142] Newville, M. Ph.D. Thesis 1997. [143] Newville, M.; Livins, P.; Yacoby, Y.; Rehr, J. J.; Stern, E. A. Phys. Rev. B 1993, 47, 14126. [144] Newville, M. AUTOBK document 1995. [145] Ravel, B. ATOMS document 1995. [146] Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J. Phys. Rev. B 1995, 52, 2995. [147] Ankudinov, A. FEFF601 document 1995. [148] Newville, N. FEFFIT document 1996. [149] Hammersley, A. P. ESRF Internal Report, ESRF98HA01T, FIT2D, 1998, V9.129 Reference Manual V3.1. [150] Gallois, B.; Real, J. A.; Hauw, C.; Zarembowitch, J. Inorg. Chem. 1990, 29, 1152. [151] Lee, J.-J.; Sheu, H.-S.; Lee, C.-R.; Chen, J.-M.; Lee, J.-F.; Wang, C.-C.; Huang, C.-H.; Wang, Y. J. Am. Chem. Soc. 2000, 122, 5742. [152] Briois, V.; Cartier dit Moulin, C.; Sainctavit, P.; Brouder, C.; Flank, A.-M. J. Am. Chem. Soc. 1995, 117, 1019. [153] Hannay, C.; H.-Franskin, M.-J.; Grandjean, F.; Briois, V.; J.-P. Itié,; Polian, A.; Trofimenko S.; Long, G. J. Inorg. Chem. 1997, 36, 5580. [154] Real, J. A.; Castro, I.; Bousseksou, A.; Verdaguer, M.; Burriel,R.; Castro,M.; Linares, J.; Varret, F. Inorg. Chem. 1997, 36, 455. [155] Briois, V.; Sainctavit, P.; Long, G. J.; Grandjean, F. Inorg. Chem. 2001, 40, 912. [156] Rudd, D. J.; Goldsmith, C. R.; Cole, A. P.; Stack, T. D. P.; Hodgson, K. O.; Hedman, B. Inorg. Chem. 2005, 44, 1221. [157] (a) Bunker, G.; Stern, E. A. Phys. Rev. Lett. 1984, 52(22), 1990. (b) Bianconi, A.; Fritsch, E.; Galas, G.; Petiau, J. Phys. Rev. B 1985, 32(6), 4292. [158] Guionneau, P.; Brigouleix, C.; Barrans, Y.; Goeta, A. E; Létard, J.-F. ; Howard, J. A. K.; Gaultier, J.; Chasseau, D. C. R. Acad. Sci. Paris 2001, 4, 161. [159] Marchivie, M.; Guionneau, P.; Létard, J.-F.; Chaseau, D. Acta. Cryst. 2005, B61, 25. [160] Roux, C.; Zarembowitch, J.; Lité, J.-P.; Polian, A.; Verdaguer, M. Inorg. Chem. 1996, 35, 574. [161] Herber, R.; Casson, L. M. Inorg. Chem. 1986, 25, 847. [162] Thole, B. T.; Cowan, R. D.; Sawatzky, G. A.; Fink, J.; Fuggle, J. C. Phys. Rev. B 1985, 31, 6856. [163] de Groot, F. M. F.; Fuggle, J. C.; Thole, B. T.; Sawatzky, G. A. Phys. Rev. B 1990, 42, 5459. [164] Kohlbeck, F.; Shirley, R. (2001). TMO. [165] Shirley, R. (2002). 'The Crysfire 2002 System for Automatic Powder Indexing: User's Manual', The Lattice Press, 41 Guildford Park Avenue, Guildford, Surrey GU2 7NL, England. [166] LeBail, A.; Duroy, H.; Fourquet, J. L. Mater. Res. Bull. 1988, 23, 447. [167] Dova, E.; Stassen, A. F.; Driessen, R. A. J.; Sonneveld, E.; Goubitz, K.; Peschar, R.; Haasnoot, J. G.; Reedijk, J.; Schenk, H. Acta Cryst. 2001, B57, 531-538. [168] Dova, E.; Peschar, R.; Sakata, M.; Kato, K.; Stassen, A. F.; Schenk, H.; Haasnoot, J. G. Acta Cryst. 2004, B60, 528-538. [169] Dova, E.; Peschar, R.; Takata, M.; Nishibori, E.; Schenk, H.; Stassen, A. F.; . F.; Haasnoot, J. G. Chem. Eur. J. 2005, 11, 1-12. [170] Money, V. A., Evans, I. R., Elhaïk, J., Halcrow, M. A. and Howard, J. A. K. Acta Cryst. 2004, B60, 41-45. [171] Larson, A.C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748. [172] Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063. [173] Domagala, M.; Grabo wski, S. J.; Urbaniak, K.; Mlostoń, G. J. Phys. Chem. A 2003, 107, 2730. [174] Domagala, M.; Grabowski, S. J. J. Phys. Chem. A 2005, 109, 5683. [175] Bader, R. F. W. Atom in Moleculers. A Quantum Theory: Oxford University Press: New York, 1990. [176] Harimanow, L. S.; Sugiyarto, K. H.; Craig, D. C.; Scudder, M. L.; Go odwin, H. A. Aust. J. Chem. 1999, 52, 109. [177] Roubeau, O.; Haasnoot, J. G.; Codjovi, E.; Varret, F.; Reedijk, J. Chem. Mater. 2002, 14(6), 2561. [178] Sumerton, A. P.; Diamantis, A. A.; Snow, M. R. Inorg. Chim. Acta 1978, 27, 123. [179] Greenaway, A. M.; O’Connor, C. J.; Schrock, A.; Sinn, E. Inorg. Chem. 1979, 18(10), 2692. [180] Bradford, F. E.; Connor, L. P.; Kilner, C. A.; Halcrow, M. A. Polyhedron 2004, 23, 2141. [181] Garcia, Y.; Bravic, G.; Cieck, C.; Chasseau, D.; Tremel, W.; Gűtlich, P. Inorg. Chem. 2005, 44, 9723. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31325 | - |
| dc.description.abstract | 本論文著重於鈦錳鐵錯化合物之電子組態與其相關性質的研究。過程中,利用X光單晶繞射從長程有序的晶體結構出發,來研究電子密度的分佈及其化學鍵在特殊物性與化性的影響, 並輔以短程有序之X光吸收光譜技術,來探究過渡金屬d軌域電子在物性與化性所伴演之角色。
在第一部分中,研究對象為三個鈦錳金屬錯化合物:(1) (NH4)n[Ti(μ2-C2O4)2]n·2nH2O 、 (2) [Mn(μ3-mal)(H2O)2]n 及(3) [Mn3(μ2-mal)2(mal)2(H2O)8]·2H2O。透過引入一非球形對稱多極模型,對其由高解析度X光單晶繞射實驗數據所得之電子密度,做適切的精算描述,進而以電子密度分析的觀點,做深入的研究。其中,由多極項係數投影所得之各金屬的3d電子組態與其由局部結構對稱所推導之軌域能量分裂均相符合。在以電子密度分佈為基礎的拓撲學分析中,M-O鍵(M = Ti, Mn)表現出與C-O及C-C等共價鍵結完全不同的性質: :ρBCP of 0.26 ~ 0.40 e/Å3,▽2ρ > 0, HBCP > 0 vs.ρBCP of 1.8 ~ 3.0 e/Å3,▽2ρ < 0, HBCP < 0。此外,與形式電荷相比,金屬帶有較小的AIM (atom in molecule) 價數,如1中的TiIII 為 2.08 價,2中的MnII 為 1.31 價,3中的Mn(1)III 與Mn(2)II分別為1.62 與1.33價。 第二部分選擇的研究系統為一系列鐵二價磁自旋交換(spin crossover)錯化合物:(4) [Fe(μ2-btr)2(NCS)2]·H2O 、 (5) [Fe0.7Co0.3(μ2-btr)2(NCS)2]·H2O 及 (6) [Fe(μ2-btr)3](ClO4)2。利用X光吸收光譜能反應出受測元素電子組態之特性,研究對象中,由溫度改變或經低溫照光(27 K,532 nm)所引起之磁自旋交換行為,能清楚而直接的被觀測。伴隨著磁自旋交換所發生的局部結構微調,也由延伸X光吸收精細結構 (EXAFS) 數據所分析,其結果亦與文獻中其他相關單晶結構研究相符合。 由X光粉末繞射實驗所成功解出的 [Fe(μ2-btr)2(NCS)2] 無水結構,證實了在 [Fe(μ2-btr)2(NCS)2]·H2O 中,由脫水所引起的可逆結構相變 (monoclinic C2/c to triclinic P-1)。脫水後,二維結構的重新排列,例如層與層間垂直距離的縮短 (5.56 Å to 4.63 Å),及二維層間彼此平行的滑動 (2.49 Å) 均造成在無水晶格中更緊密地堆疊。此立體阻礙的增加,推測將限制伴隨磁自旋交換所引發的局部結構微調,進而阻止磁自旋交換行為在此無水結構中發生的可能。 本論文的研究,說明X光單晶繞射及X光吸收光譜技術在過渡金屬錯化合物研究的重要性。其中以X光粉末繞射來解出無水之鐵二價磁自旋交換錯化合物的結構,更是當今晶體繞射學上的一項重要成果。此結果意謂著未來在鑑定應用於分子材料中的磁自旋交換錯化合物,X光粉末繞射已足以提供類似傳統單晶結構解析所要的資訊。 | zh_TW |
| dc.description.abstract | Specific features of electronic configurations of 3d transition metals in complexes and the corresponding interesting behaviors such as bonding characteristics and magnetic properties are pursued. In the first part of this dissertation three transition metal complexes, 1, (NH4)n[Ti(μ2-C2O4)2]n·2nH2O, 2, [Mn(μ3-mal)(H2O)2]n and 3, [Mn3(μ2-mal)2(mal)2(H2O)8]·2H2O, are investigated, of which electron density distributions are extracted from the corresponding high-resolution single crystal X-ray diffraction data by applying the aspherical multipole model refinement. The five 3d orbital populations of the metal sites (Ti in 1 and Mn in 2 and 3) derived from multipole terms are found to be well suited with the local coordination spheres. The total numbers of 3d electrons are also comparable with the corresponding net atom in molecule (AIM) charges. Significant difference between the two Mn atoms in 3 (which are expected to be MnIII and MnII, respectively) is not found though slight difference is still observable. M-O bonds in all the three complexes (M = Ti in 1 and Mn in 2 and 3) exhibit a total different bonding characteristic in comparison with those of organic fragments e.g. C-C, C-O and O-H, among which those with positive total energetic densities are characterized as close-shell interactions while those with negative total energetic densities are characterized as transit closed-shell interactions. The correlations between topological properties and the accompanied energetic densities of metal-oxygen bonds are inspected; the result shows similar behaviors with those of hydrogen bonding interactions.
In the second part of the thesis, three spin crossover (SCO) systems (4, [Fe(μ2-btr)2(NCS)2]·H2O, 5, [Fe0.7Co0.3(μ2-btr)2(NCS)2]·H2O and 6, [Fe(μ2-btr)3](ClO4)2) are studied, of which transitions between spin states of metal sites are observed as the consequence of external perturbations. X-ray absorption spectroscopy at both metal K-edge and L-edge is performed to probe directly the exact electronic configurations of target metal centers. Typical spectra of FeII at HS and LS states are reproduced adequately. Spectrum measured after irradiation with a 532 nm laser source at 27 K is comparable with that at RT, revealing that the light-induced excited spin state trapping (LIESST) state exhibit a HS configuration. Spin state conversions with increasing temperature are monitored as well by a series of absorption spectra (at K-edge for 4 and L-edge for 6) where unexpected smoothened evolutions originated from sample grinding are obtained. For 4, the loss of SCO phenomenon after dehydration is pursued as well by synchrotron powder X-ray diffraction. A reversible structure phase transition from monoclinic C 2/c to triclinic P is evidenced. The anhydrous species yields a contracted unit cell especially in the direction along the normal of the 2D layer. The distance between adjacent layers is significantly shortened from 5.56 Å to 4.63 Å together with a slight sliding parallel to the layer. Consequently, the compressed free space may restrict the necessary structure fine-tuning accompanied with the change in spin state and thus limit the occurrence of spin transition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:43:09Z (GMT). No. of bitstreams: 1 ntu-95-F89223056-1.pdf: 12157134 bytes, checksum: d9dec322e93d7538470e82180e5964d7 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
List of Figures VII List of Tables XIII List of Studied Compounds XVI Preface 1 Chapter 1 Electronic Configuration and Bond Characterization of Ti and Mn Complexes 4 1. Introduction 4 2. Experimental details and the corresponding theoretical backgrounds 6 2.1 Sample preparations and data collections 6 2.2 Multipole model 10 2.3 Refinement strategies 11 2.4 Theoretical calculation. 13 2.5 p-DFTMM 13 2.6 κ’-restricted multipole model (KRMM) 14 2.7 Topological analysis 14 3. Results and discussion 17 3.1 Structure descriptions 17 3.2 Crystal structures of 3, [Mn3(μ2-mal)2(mal)2(H2O)8]·2H2O, solved with disordered model and with different space groups (e.g. P21 and P1) 23 3.3 Weights Concerned in a High Redundancy Measurements 30 3.4 Multipole model refinements 31 3.5 Organic fragments 36 3.6 Metal-oxygen bonds 42 3.7 Atomic graph of metals and the corresponding 3d-orbital populations 54 3.8 Atom domains and AIM charges 59 3.9 Hydrogen bonding interactions 66 4. Summary 71 Chapter 2 Magnetic, Spectroscopic and Structural Investigations of Fe-btr Spin Crossover (SCO) Systems 73 1. Introduction 73 2. Experimental section 77 3. Results and discussion 83 3.1 Magnetic measurements 83 3.2 Fe K-edge XANES (X-ray absorption near edge spectroscopy) spectra 84 3.2.1 Temperature dependence of 4, [Fe(μ2-btr)2(NCS)2]•H2O and 6, [Fe(μ2-btr)3](ClO4)2 84 3.2.2 XANES spectra of 4, [Fe(μ2-btr)2(NCS)2]•H2O, and 5, [Fe0.7Co0.3(μ2-btr)2(NCS)2]•H2O at LIESST states 89 3.2.3 The corresponding EXAFS data analyses 92 3.3 Fe L-edge absorption spectroscopy 96 3.3.1 Temperature dependence of 4, [Fe(μ2-btr)2(NCS)2]•H2O 96 3.3.2 Temperature dependence of 6, [Fe(μ2-btr)3](ClO4)2 97 3.4 Structure determination of anhydrous [Fe(μ2-btr)2(NCS)2] 100 3.4.1 Reversible structural phase transition of dehydration-hydration process 100 3.4.2 Unit cell indexing of anhydrous [Fe(μ2-btr)2(NCS)2] and the corresponding initial structure model 102 3.4.3 Rietveld Refinement 104 3.5 Structure description of the anhydrous complex, [Fe(μ2-btr)2(NCS)2] 108 3.6 Anhydrous structure at low temperature 112 3.7 Influence of solvent molecules in SCO behavior 115 3.8 Pressure-induced phase transition in [Fe(μ2-btr)2(NCS)2]•H2O 118 3.9 Spin transition of [Fe(μ2-btre)2(NCS)2] (where btre = 1,2-bis(1,2,3-triazole-4-yl)ethane)[181] 122 4. Summary 123 Conclusions 125 References 127 Appendix 135 | |
| dc.language.iso | en | |
| dc.subject | 電子密度分佈 | zh_TW |
| dc.subject | 粉末X光繞射 | zh_TW |
| dc.subject | 磁自旋交換 | zh_TW |
| dc.subject | X光吸收光譜 | zh_TW |
| dc.subject | XAS | en |
| dc.subject | spin crossover | en |
| dc.subject | powder XRD | en |
| dc.subject | electron density distribution | en |
| dc.title | 鈦錳鐵錯合物之鍵性分析與電子組態之研究 | zh_TW |
| dc.title | Bond Characterization and Electronic Configuration of Ti, Mn and Fe Complexes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 彭旭明 教授,陳昭岑 教授,李志甫 研究員,許火順 副研究員,李其融 副教授 | |
| dc.subject.keyword | 電子密度分佈,磁自旋交換,粉末X光繞射,X光吸收光譜, | zh_TW |
| dc.subject.keyword | electron density distribution,spin crossover,powder XRD,XAS, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-12-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 11.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
