Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31303
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊宗(Jiunn-Tzong Wu)
dc.contributor.authorI-Ling Laien
dc.contributor.author賴宜鈴zh_TW
dc.date.accessioned2021-06-13T02:41:42Z-
dc.date.available2007-02-01
dc.date.copyright2007-01-05
dc.date.issued2006
dc.date.submitted2006-12-17
dc.identifier.citation李素華。1995。世界之檜木類。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會,台北。第3-13頁。
林裕仁、林進龍。2000。檜木苗培育。林業叢刊119號。行政院農委會林業試驗所,台北。共70頁。
松浦作治郎。1942。Уユヱ⑦ёвワ、мЯёв稚樹、稚苗в消長Ь環境要素Ьв關係。台灣總督府林業試驗所報告第5號。共204頁。
黃進和。1995。森林開發處之檜木林分布與經營。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會,台北。第181-198頁。
楊勝任。1995。檜木林之植群演替。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會,台北。第119-125頁。
Anderson, M. C. 1964. Studies of the woodland light climate. I. The photographic computation of light conditions. J. Ecol. 52: 27-41.
Arya, S. P. S. 1988. Introduction to micrometeorology. In R. Dmowska and J. R. Holton (Eds.) International Geophysics Series. 42. Academic Press, London, UK. 307 p.
Ashton, P. M. S. and G. P. Berlyn. 1992. Leaf adaptations of some Shorea species to sun and shade. New Phytol. 121: 587-596.
Aylett, G. P. 1985. Irradiance interception, leaf conductance and photosynthesis in Jamaican upper montane rain forest trees. Photosynthetica 19: 323–337.
Baldocchi, D. and S. Collineau. 1994. The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In M. M. Caldwell and R. W. Pearcy (Eds.) Exploitation of Environmental Heterogeneity by Plants. Academic Press, San Diego, CA, USA. pp. 21-71.
Baynton, H. W. 1968. Ecology of an elfin forest in Puerto Rico。2. Microclimate of Pico Del Oeste. J. Arnold Arbor. Harv. Univ. 49: 419-430.
Bazzaz, F. A. 1979. The physiological ecology of plant succession. Annu. Rev. Ecol. Syst. 10: 351-371.
Bazzaz, F. A. 1996. Plants in changing environments: Linking physiological, population and community ecology. Cambridge University Press, Cambridge, UK. 320 p.
Bazzaz, F. A. and R. W. Carlson. 1982. Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54: 313-316.
Bruijnzeel, L. A. and E. J. Veneklaas. 1998. Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 79: 3-9.
Bruijnzeel, L. A., M. J. Waterloo, J. Proctor, A. T. Kuiter and B. Kotterink. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the 'Massenerhebung' effect. J. Ecol. 81: 145-167.
Canham, C. D., J. S. Denslow, W. J. Platt, J. R. Runkle, T. A. Spies and P. S. White. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 20: 620-631.
Caspersen, J. P. and M. Saprunoff. 2005. Seedling recruitment in a northern temperate forest: The relative importance of supply and establishment limitation. Can. J. For. Res. 35: 978-989.
Cavelier, J. and C. A. Mejia. 1990. Climatic factors and tree stature in the elfin cloud forest of Serrania de Macuira, Colombia. Agric. For. Meteorol. 53: 105-123.
Chang, L.-M. 1961. Ecological studies on the vegetation of Mt. Ta-Yuan. Bull. Taiwan For. Res. Inst. No. 70. Taipei, Taiwan. 48pp. (in Chinese with English abstract)
Chang, L.-M. 1963. Ecological studies of Chamaecyparis formosensis and Chamaecyparis taiwanensis mixed forest in Taiwan. Bull. Taiwan Forest. Res. Inst. No. 91. Taiwan Forestry Research Institute, Taipei. 23pp. (in Chinese with English Abstract)
Chang, N.-H., Y.-R. Hsui, F.-W. Horng, H.-M. Yu and F.-C. Ma. 2001. Natural seeding and seedling occurrence in the Chamaecyparis forest at Chilan Mt. Area. Taiwan J. For. Sci. 16: 321-326.
Chang, S.-C., I. L. Lai and J.-T. Wu. 2002. Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmos. Res. 64: 159-167.
Chazdon, R. L. and C. B. Field. 1987. Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. Oecologia 73: 525-532.
Chazdon, R. L. and R. W. Pearcy. 1991. The importance of sunflecks for forest understory plants - Photosynthetic machinery appears adapted to brief, unpredictable periods of radiation. BioScience 41: 760-766.
Chen, C.-D. 1968. The selection of planted tree species in Taiwan. Q. J. Taiwan For. 1: 79-86. (in Chinese)
Chen, C.-P. 2003. The effects of nitrogen and phosphorus on the seedlings growth and nutrient accumulation of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana. Ms. Thesis, Institute of Forestry, National Taiwan University. Taipei, Taiwan. 91pp. (in Chinese with English Abstract)
Chen, C.-S. and Y.-L. Chen. 2003. The rainfall characteristics of Taiwan. Mon. Wea. Rev. 131: 1323-1341.
Chen, H. Y. H. and K. Klinka. 1997. Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory. Tree Physiol. 17: 23-29.
Chen, M.-C. and C.-H. Chi. 1988. A preliminary study of fog occurence in Taiwan. meteorological Bulletin. 34: 308-318. (in Chinese with English abstract)
Chen, S.-H. and Y.-L. Yang. 1996. Study of vegetation history around Yuanyang Lake. Paper presented at the The Joint Sym. On Taiwan Quaternary (6) and on Investigation of Subsurface Geology and Engineering Environment of Taipei Basin, Taipei, Taiwan. pp. 257-260.
Chi, C.-H. 1969. The orographic climate of Taiwan. Bank of Taiwan Quarterly 20: 155-207. (in Chinese with English abstract)
Chiu, L.-Y. 1990. Effects of various light intensities on the growth of seedlings of five coniferous tree species. Ms. Thesis, Institute of Forestry, National Chung Hsing University. Taichung, Taiwan. 60 p. (in Chinese with English abstract)
Chou, C. H., T. Y. Chen, C. C. Liao and C. I. Peng. 2000. Long-term ecological research in the Yuanyang Lake forest ecosystem I. Vegetation composition and analysis. Bot. Bull. Acad. Sin. 41: 61-72.
Chou, M.-D. 1990. Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Clim. 3: 209-217.
Chou, M.-D. and K.-T. Lee. 1996. Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci. 53: 1203-1208.
Chou, M.-D. and M. J. Suarez. 1999. A shortwave radiation parameterization for atmospheric studies. Technical Reprot Series on Global Modeling and Data Assimilation,Volumn 15, NASA/TM- No. 1999-104606. Hanover, USA. 40 p.
Craine, J. M. 2005. Reconciling plant strategy theories of Grime and Tilman. J. Ecol. 93: 1041-1052.
Dalling, J. W., C. E. Lovelock and S. P. Hubbell. 1999. Growth responses of seedlings of two neotropical pioneer species to simulated forest gap environments. J. Trop. Ecol. 15: 827-839.
Demmig-Adams, B. and W. W. Adams III. 2006. Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation. New Phytol. 172: 11-21.
Ellis, A. R., S. P. Hubbell and C. Potvin. 2000. In situ field measurements of photosynthetic rates of tropical tree species: A test of the functional group hypothesis. Can. J. Bot. 78: 1336-1347.
Endler, J. A. 1993. The color of light in forests and its implications. Ecol. Monogr. 63: 1-27.
Evans, J. R. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell Environ. 24: 755-767.
FDA. 1993. Sustainable management planning of forest resources in Chi-lan-shan area. Forest Development Administration, Taipei. 88 p. (in Chinese)
Frazer, G. W., C. D. Canham and K. P. Lertzman. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to exract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentaion. Simon Fraser University and Institute of Ecosystem Studies, Burnaby, British Columbia, Canada and Millbrook, NY, USA. 36 p.
Fujimaki, R., T. P. McGonigle and H. Takeda. 2005. Soil micro-habitat effects on fine roots of Chamaecyparis obtusa Endl.: A field experiment using root ingrowth cores. Plant Soil 266: 325-332.
Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. In A. Klute (Ed.) Methods of soil analysis: Part 1, physical and mineralogical methods -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 383-411.
Gillman, L. N. and J. Ogden. 2001. Physical damage by litterfall to canopy tree seedlings in two temperate New Zealand forests. J. Veg. Sci. 12: 671-676.
Godbold, D. L., H.-W. Fritz, G. Jentschke, H. Meesenburg and P. Rademacher. 2003. Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol. 23: 915-921.
Gordon, C. A., R. Herrera and T. C. Hutchinson. 1994. Studies of fog events at two cloud forests near Caracas, Venezuela - I: Frequency and duration of fog. Atmos. Environ. 28: 317-322.
Hölscher, D., C. Leuschner, K. Bohman, M. Hagemeier, J. Juhrbandt and S. Tjitrosemito. 2006. Leaf gas exchange of trees in old-growth and young secondary forest stands in Sulawesi, Indonesia. Trees 20: 278-285.
Helmke, P. A. and D. L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. In D. L. Sparks, et al. (Eds.) Methods of soil analysis: Part 3, Chemical methods. SSSA Book Series No 5. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA. 567 p.
Ho, C.-F. 1988. The inbreeding of Chamaecyparis formosensis forest. Modern Silviculture 3: 24-28. (in Chinese)
Hsiao, C.-K. 2005. The analysis of selected weather stations and the autocorrelation of the climatic change from 1897 to 2004 in Taiwan. Paper presented at the Proceedlings of Conference on Weather Analysis and Forcasting 2005. Central Weather Bureau, Taipei, Taiwan. pp. 433-438.
Ingestad, T. 1982. Relative addition rate and external concentration - driving variables used in plant nutrition research. Plant Cell Environ. 5: 443-453.
Jennings, S. B., N. D. Brown and D. Sheil. 1999. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry 72: 59-73.
Jones, H. G. 1992. Radiation. In Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd ed. Cambridge University Press, Cambridge, UK. pp. 9-44.
Kenny, D. R. 1982. Nitrogen-availability indices. In A. L. Page, et al. (Eds.) Methods of soil analysis: Part 2, Chemical and microbiological properties -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 711-733.
Kitayama, K. 1995. Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In L. S. Hamilton, et al. (Eds.) Tropical Montane Cloud Forests. Springer-Verlag, New York, USA. pp. 183-197.
Klemm, O., S.-C. Chang and Y.-J. Hsia. 2006. Energy fluxes at a subtropical mountain cloud forest. For. Ecol. Manag. 224: 5-10.
Kuan, D.-W. and P.-H. Lin. 2005. The analysis of characteristics of radiosonde soundings in Taiwan. Paper presented at the Proceedlings of Conference on Weather Analysis and Forcasting 2005. Central Weather Bureau, Taipei, Taiwan. pp. 19-24.
Kuo, S. 1996. Phosphorus. In D. L. Sparks, et al. (Eds.) Methods of soil analysis: Part 3, Chemical methods. SSSA Book Series No 5. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA. pp. 894-895.
Kuo, Y.-L. 2000. Photosynthesis of a tropical canopy tree, Ficus benjamina, and understory species in a lowland rain forest in Nanjenshan, Taiwan. Taiwan J. For. Sci. 15: 351-363. (in Chinese with English summary)
Lai, I.-L., H. Scharr, A. Chavarria-Krauser, R. Kusters, J.-T. Wu, C.-H. Chou, U. Schurr and A. Walter. 2005. Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant Cell Environ. 28: 1496-1505.
Lai, Y.-J. and P.-H. Lin. 2005. Estimating spatial distribution of solar irradiance in earth surface. Paper presented at the Proceedlings of Conference on Weather Analysis and Forcasting 2005. Central Weather Bureau, Taipei, Taiwan. pp. 57-62.
Lambers, H., F. S. Chapin and T. L. Pons. 1998. Plant Physiological Ecology. Spring-Verlag, New York, USA. 540 p.
Larcher, W. 1995. The environment of plants. In Physiological Plant Ecology. 3rd ed. Springer-Verlag, Berlin, Germany. pp. 1-56.
Leakey, A. D. B., M. C. Press and J. D. Scholes. 2003. Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Oecologia 135: 184-193.
Leakey, A. D. B., J. D. Scholes and M. C. Press. 2005. Physiological and ecological significance of sunflecks for dipterocarp seedlings. J. Exp. Bot. 56: 469-482.
Lee, S.-C. 1962. Taiwan red-and yellow-cypress and their conservation. Taiwania 8: 1-15.
Lei, T. T. and M. J. Lechowicz. 1997. The photosynthetic response of eight species of Acer to simulated light regimes from the centre and edges of gaps. Func. Ecol. 11: 16-23.
Lei, T. T. and M. J. Lechowicz. 1998. Diverse responses of maple saplings to forest light regimes. Ann. Bot. 82: 9-19.
Lei, T. T., E. T. Nilsen and S. W. Semones. 2006. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings. Plant Ecol. 184: 143-156.
Li, H.-L. and H. Keng. 1994. Cupressaceae. In T.-C. Huang, et al. (Eds.) Flora of Taiwan. 1 Vol. 1. 2nd ed. Editorial Committee of the Flora of Taiwan, Taipei. pp. 586-595.
Li, S.-J. 1977. Reproductive biology of Chamaecyparis IV. Factors affecting seed germination. Proc. Nat. Sci. Cou. ROC. 10: 63-73.
Liang, Y.-C. 1992. Micro-site survey of insolation and temperature on the indigenous cypress wildings in Chi-Lan Mountain. Ms. Thesis, Institute of Forestry, National Taiwan University. Taipei, Taiwan. 55 p. (in Chinese with English Abstract)
Liao, C.-C. 2003. Relationship of coarse woody debris and regeneration of Chamaecyparis obtusa var. formosana in Yuanyang Lake Nature Reserve, Taiwan. PhD. Thesis, Institute of Ecology and Evolutionary iology, National Taiwan University. Taipei, Taiwan. 83 p.
Liao, C.-C., C.-H. Chou and J.-T. Wu. 2003a. Population structure and substrates of Taiwan yellow false cypress (Chamaecyparis obtuse var. formosana) in Yuanyang Lake Nature Reserve and nerby Szumakuszu, Taiwan. Taiwania 48: 6-12.
Liao, C.-C., C.-H. Chou and J.-T. Wu. 2003b. Regeneration patterns of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Bot. Bull. Acad. Sin. 44: 229-238.
Lin, C. Y. and C. S. Chen. 2002. A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorol. Atmos. Phys. 81: 1-25.
Lin, H.-H. and K.-S. Lai. 1999. Composition and DBH class distribution of the stands of Chamaecyparis formosensis type in the Juiyen Nature Reserve. Endemic Species Research. 1: 49-60. (in Chinese)
Lin, H.-J. 2005. Aerosol radiative forcing at Taiwan in spring. Ms. Thesis, Institute of Atmospheric Sciences, National Taiwan University. Taipei, Taiwan. 64 p. (in Chinese with English abstract)
Lin, H.-L. and S.-R. Kuo. 2003. Germination of Chamaecyparis formosensis and C. obtusa var. formosana seeds in various water stress regimes. Taiwan J. For. Sci. 18: 13-23.
Lin, P.-H., M.-D. Chou, Q. Ji and S.-C. Tsay. 2002. Clear-sky surface radiation during South China Sea Monsoon Experiment. Terres. Atmos. Ocean. Sci. 13: 185-196.
Lin, T.-C. and J.-M. Chiang. 2002. Applications of hemispherical photographs in studies of forest ecology. Taiwan J. For. Sci. 17: 387-400.
Lin, W.-F., W.-C. Lin and J.-L. Lu. 1958. Studies on the light intensities required for growth of seedlings of Taiwan red cypress (Chamaecyparis formosensis Matsum.) Bull. Taiwan For. Res. Inst. No. 55. Taipei. 26 p. (in Chinese with English summary)
Liu, T. 1966. Study on the phytogeography of the conifers and taxads of Taiwan. Bull. Taiwan Forest. Res. Inst. No. 122. Taipei. 33 p. (in Chinse with English summary)
Liu, T. 1971. The classification of the climax vegetation communities of Taiwan. II. The alpine tundra and coniferous forest formation. Bull. Taiwan For. Res. Inst. No. 203. Taipei. 24 p.
Liu, T. 1975. Ecological study on Chamaecyparis forest in Taiwan. J. Agric. Assoc. China n. s. 92: 143-178.
Liu, T. and L.-M. Chang. 1962. An investigation of the forest vegetation of Lu-Chang-Ta-Shan. Bull. Taiwan For. Res. Inst. No. 85. Taipei. 52 p. (in Chinese with English summary)
Liu, T. and K.-S. Hsu. 1973. Ecological study on Yuan-yang Lake Natural Area Reserve. Bull. Taiwan Forest. Res. Inst. No. 237. 32 p. (in Chinese with English abstract)
Liu, T., C.-C. Koh and B.-Y. Yang. 1961. Ecological survey on Taiwan important forest types. Bull. Taiwan For. Res. Inst. No. 72. Taipei, Taiwan. 65 p. (in Chinese with English Abstract)
Liu, Z., H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An and W. Chang. 2004. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution. Nature 428: 287-292.
Lookingbill, T. R. and D. L. Urban. 2003. Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agric. For. Meteorol. 114: 141-151.
Lusk, C. H. 2002. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 132: 188-196.
Lusk, C. H. and A. D. Pozo. 2002. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Austral Ecol. 27: 173-182.
McCree, K. J. 1981. Photosynthetically active radiation. In O. L. Lange, et al. (Eds.) Encyclopedia of Plant Physiology n. s. Vol. 12A. Physiological Plant Ecology. I. Responses to the Physical Environment. Spring-Verlag, Berlin, Germany. pp. 41-55.
Mclean, E. O. 1982. Soil pH and lime requirement. In A. L. Page, et al. (Eds.) Methods of soil analysis: Part 2, Chemical and microbiological properties -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 199-224.
Mori, A. and E. Mizumachi. 2005. Season and substrate effects on the first-year establishment of current-year seedlings of major conifer species in an old-growth subalpine forest in central Japan. For. Ecol. Manag. 210: 461-467.
Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In A. L. Page, et al. (Eds.) Methods of soil analysis: Part 2, Chemical and microbiological properties -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 539-579.
Nilsen, E. T. and D. M. Orcutt. 1996. Physiology of plants under stress 2: Abiotic factors. John Wiley & Sons, Inc., Hoboken, NJ, USA. 689 p.
Nogueira, A., C. A. Martinez, L. L. Ferreira and C. H. B. A. Prado. 2004. Photosynthesis and water use efficiency in twenty tropical tree species of differing succession status in a Brazilian reforestation. Photosynthetica 42: 351-356.
Oberbauer, S. F., D. B. Clark, D. A. Clark and M. Quesada. 1988. Crown light environments of saplings of two species of rain forest emergent trees. Oecologia 75: 207-212.
Pearcy, R. W. 1987. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Func. Ecol. 1: 169-178.
Pearcy, R. W. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 421-453.
Pfitsch, W. A. and R. W. Pearcy. 1989. Steady-state and dynamic photosynthetic response of Adenocaulon bicolor (Asteraceae) in its redwood forest habitat. Oecologia 80: 471-476.
Poorter, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Func. Ecol. 13: 396-410.
Poorter, L., R. Kwant, R. Hernández, E. Medina and M. J. A. Werger. 2000. Leaf optical properties in Venezuelan cloud forest trees. Tree Physiol. 20: 519-526.
Poorter, L., M. Van De Plassche, S. Willems and R. G. A. Boot. 2004. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6: 746-754.
Rhoades, J. D. 1982. Cation exchange capacity. In A. L. Page, et al. (Eds.) Methods of soil analysis: Part 2, Chemical and microbiological properties -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 149-157.
Rich, P. M., D. B. Clark, D. A. Clark and S. F. Oberbauer. 1993. Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric. For. Meteorol. 65: 107-127.
Santiago, L. S. and S. S. Mulkey. 2005. Leaf productivity along a precipitation gradient in lowland Panama: Patterns from leaf to ecosystem. Trees. 19: 349-356.
Schmundt, D., M. S. Jähne and U. Schurr. 1998. Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. Plant J. 16: 505-514.
Schuur, E. A. G. 2003. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 84: 1165-1170.
Shieh, S.-L., S.-T. Wang, M.-D. Cheng and T.-C. Yeh. 1998. Tropical cyclone tracks over Taiwan from 1897 to 1996 and their applications. Atmospheric R & D Center, Central Weather Bureau, Taipei. 497 p. (in Chinese with English Abstact)
Sipe, T. W. and F. A. Bazzaz. 1994. Gap partitioning among maples (Acer) in central New England: Shoot architecture and photosynthesis. Ecology. 75: 2318-2332.
Smith, H. 1982. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 33: 481-518.
Smith, W. K., A. K. Knapp and W. A. Reiners. 1989. Penumbral effects on sunlight penetration in plant communities. Ecology 70: 1603-1609.
Soil Survey Staff. 1993. Soil survey manual. US Department of Agriculture handbook no. 18 US Government Printing Office, Washington, DC, USA. 437 p.
Stadtmüller, T. 1987. Cloud forests in the humid tropics. A bibliographic review. The United Nations University, Tokyo.
Su, H.-J. 1984a. Studies on the climate and vegetation types of the natural forests in Taiwan (I) Analysis of the variations in climatic factors. Q. J. Chin. For. 17: 1-14.
Su, H.-J. 1984b. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Q. J. Chin. For. 17: 57-73.
Sultan, S. E. and F. A. Bazzaz. 1993. Phenotypic plasticity in Polygonum persicaria. I. Diversity and uniformity in genotypic norms of reaction to light. Evolution 47: 1009-1031.
Terashima, I., Y. T. Hanba, Y. Tazoe, P. Vyas and S. Yano. 2006. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57: 343-354.
Thimijan, R. W. and R. D. Heins. 1983. Photometric, radiometric, and quantum light units of measure - a review of procedures for Interconversion. HortScience 18: 818-822.
Thomas, G. W. 1982. Exchangeable cation In A. L. Page, et al. (Eds.) Methods of soil analysis: Part 2, Chemical and microbiological properties -Agronomy Monograph No 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 159-165.
Thompson, B. E. 1985. Seedling morphological evaluation - What you can tell by looking. Paper presented at the Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests. (Ed.) M. L. Duryea. Forest Research Laboratory, Oregon State University, Corvallis, USA. pp. 59-71.
Tomioka, R. and C. Takenaka. 2001. Differential ability of the root to change rhizosphere pH between Chamaecyparis obtusa Sieb. (hinoki) and Quercus serrata Thumb (konara) under aluminum stress. Water Air Soil Poll. 130: 1013-1018.
Tomioka, R. and C. Takenaka. 2004. Difference in response to aluminum among Japanese coniferous species. Soil Sci. Plant Nutr. 50: 755-761.
Trebst, A. 1995. Dynamics in phoyosystem II structure and function. In E.-D. Schulze and M. M. Caldwell (Eds.) Ecophysiology of Photosynthesis. Ecological Studies Vol. 100. Springer-Verlag, Berlin, Germany. pp. 3-16.
Van Hinsberg, A. 1997. Morphological variation in Plantago lanceolata L.: Effects of light quality and growth regulators on sun and shade populations. J. Evol. Biol. 10: 687-701.
Walter, A., R. Feil and U. Schurr. 2002a. Restriction of nyctinastic movements and application of tensile forces to leaves affects diurnal patterns of expansion growth. Func. Plant Bio. 29: 1247-1258.
Walter, A., H. Spies, S. Terjung, R. Küsters, N. Kirchgeßner and U. Schurr. 2002b. Spatio-temporal dynamics of expansion growth in roots: Automatic quantification of diurnal course and temperature response by digital image sequence processing. J. Exp. Bot. 53: 689-698.
Wang, C.-C. 2000. Studies on the plant resources of Chamaecyparis forest in Chi-lan Shan area. National Park Association in Taiwan, Taipei, Taiwan. 111 p. (in Chinese)
Wang, G. G., H. Qian and K. Klinka. 1994. Growth of Thuja plicata seedlings along a light gradient. Can. J. Bot. 72: 1749-1757.
Wang, H. and C.-T. Li. 2000. Studies on the geological and topographical resources of Chamaecyparis forest in Chi-lan-san area. National Park Association in Taiwan, Taipei, Taiwan. 73 p. (in Chinese)
Waring, R. H. and J. F. Franklin. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204: 1380-1386.
Warren, C. R., J. F. McGrath and M. A. Adams. 2005. Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles. Ann. For. Sci. 62: 1-8.
Washitani, I. and Y. Tang. 1991. Microsite variation in light availability and seedling growth of Quercus serrata in a temperate pine forest. Ecol. Res. 6: 305-316.
Whitmore, T. C., N. D. Brown, M. D. Swaine, D. Kennedy, C. I. Goodwin- Bailey and W. K. Gong. 1993. Use of hemispherical photographs in forest ecology: measurement of gap size and radiation totals in a Bornean tropical rain forest. J. Trop. Ecol. 9: 131-151.
Wintermans, J. F. and A. De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta. 109: 448-453.
Yeh, C.-F. 2004. Estimation of biomass and fog deposition of a yellow cypress forest. Ms. Thesis, Institute of Nature Resource, National Dong Hwa University. Hualien, Taiwan. 84 p. (in Chinese)
You, C.-H. 2000. Light environment in the plantation of Taiwan red falsecypress (Chamaecyparis formosensis Matsum.). Ms. Thesis, Institute of Forestry, National Taiwan University. Taipei, Taiwan. 59 p. (in Chinese with English Abstract)
Zeiger, E. 1998. Blue-light responses: Stomatal movements and morphogenesis. In L. Taiz and E. Zeiger (Eds.) Plant Physiol. 2nd ed. Sinauer Associates Inc., Sunderland, USA. pp. 517-541.
Zobel, D. B. 1998. Chamaecyparis forests: A comparative analysis. In A. L. Laderman (Ed.) Coastally Restricted Forests. Oxford University Press, New York. pp. 39-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31303-
dc.description.abstract台灣扁柏(Chamaecyparis obtusa Sieb. & Zucc. var. formosana (Hayata) Rehder,以下稱扁柏)和紅檜(C. formosensis Matsum.)是台灣特有的兩種檜木樹種,它們只分佈在台灣的山地雲霧林範圍內。觀察發現扁柏小苗主要分佈在扁柏林下或森林孔隙內,而紅檜小苗則在較大的干擾地生長,因此推測扁柏小苗比紅檜小苗耐陰,此耐陰性的差異可能是造成兩種小苗在不同環境更新的原因之一。為了驗證此推論,本研究在台灣東北部棲蘭山區,比較不同類型生育地中自然生長的紅檜與扁柏小苗,量測其在各生育地的存活率、生長量、葉綠素含量、形態以及光合作用特性等,並記錄棲蘭山區包括雲霧動態之氣象因子,及調查不同生育地之光環境與生長基質特性。此外,分別在溫室和生長箱中,將兩種檜木小苗種植在模擬不同生育地之光量下,檢測小苗在獲得充足的水分和養分之生長條件下的表現。結果發現在棲蘭山區之氣候有明顯的季節性、非常潮濕和光量低等特徵。此區域一年有平均約40%以上的時間受雲霧籠罩,霧發生時林冠上光量平均降低約88%,以年平均而言,林上光量因雲霧之發生衰減約70%。扁柏天然林下的斑光發生頻率和照光時間也受雲霧遮蔽而大幅減少。調查發現,在棲蘭山區,扁柏小苗在野外的適存光量較紅檜小苗低。不論是在自然生育地或是人工控制環境,兩種植物小苗在形態和生理上的特性都展現了對不同光環境的可塑性:在低光下,紅檜和扁柏小苗在光合作用特性上沒有明顯差異,且在被保護並供給充分水分、養分情況下皆可存活。雖然如此,在低光下,扁柏小苗在環境養分和水分充足時提高分配在葉部的生物量,而當養分受限時,則降低每單位葉面積分配到的生物量,兩種形態上的適應都使葉部面積增加以適應陰暗環境;相反的,紅檜小苗在低光環境下,主要以增加莖的長度來因應,而不是調整葉部。在較高光量環境下,紅檜小苗比扁柏小苗具有較高的存活率、光合作用率、葉相對生長率,而使生物量明顯比扁柏小苗高,因此比扁柏具有競爭力。在持續的高光下,兩種檜木小苗的光合作用效率和葉相對生長率都被明顯的抑制,顯示紅檜和扁柏小苗都非極端陽性樹種。由本研究結果來看,此區域雲霧頻繁所造成之光量降低可能對扁柏小苗的存活和生長比紅檜小苗有利。本研究證明紅檜和扁柏兩種小苗早期的生長受光環境影響有差異的表現,可能進一步影響兩種檜木小苗在自然環境下之存活、更新及分佈。zh_TW
dc.description.abstractChamaecyparis obtusa Sieb. & Zucc. var. formosana (Hayata) Rehder (CO) and C. formosensis Matsum. (CF), are two endemic tree species distributed exclusively in the mountainous cloud forests of Taiwan. The majority of CO seedlings is found under the canopy of mature forests or in small gaps, while those of CF predominantly under more open conditions in disturbed field. Such a differential distribution pattern was considered to be attributable to their difference in shade-tolerance. To test the hypothesis, the survival, growth, chlorophyll content, morphological and photosynthetic traits of young seedlings of either species were compared in Chi-lan-shan area of northeastern Taiwan. Data such as canopy openness, the micrometeorological conditions including fog occurrence and light intensity above and under the canopy of Chamaecyparis forest were collected and then were simulated in the controlled environment conducted in the growth chamber as well as in the green house to test the performance of seedlings under optimal water and nutrient conditions. The results showed that distinct seasonality, perhumid and dim light conditions were the most distinguished characteristics of the climate in Chi-lan-shan area. Fog occurrence reduced 88% of the light intensity reached the canopy and also reduced the frequency and duration of sunflecks under the canopy of Chamaecyparis forest. The frequency of fog occurrence has been as high as 40% of annual time and has reduced ca. 70% of the accumulated photosynthetically active radiation. The distribution pattern of the seedlings in Chi-lan-shan area shows that CO established in habitats with lower light regime than CF. Both species display a plasticity to the various light environments, either in the natural or controlled environments, but in different ways. Under low light condition, there was no significant difference between these two species in photosynthetic traits. Nevertheless, to acclimate to shade condition, seedlings of CO increase the leaf mass ratio under sufficient supplies of nutrients or reduce the leaf mass per area under poor nutrient supply. In contrast to CO, seedlings of CF increase the stem length. Under higher light condition such as in forest gaps, CF displays higher survival rate, photosynthetic capacity, relative growth rate of leaves, and, as a result, higher plant biomass. Hence, CF is considered to be superior to CO under higher light environment. However, continued high light reduces the photosynthesis and leaf growth of either species significantly. The seedlings of either two species are not extremely sun-acclimated. Results from this study suggest that the reduction of light intensity due to fog occurrence in the studied area provides a more favorable condition for CO than for CF. This study also provides evidence that the light environment has played an important role not only in affecting the growth of Chamaecyparis seedlings at early stage, but also in the subsequent survival, regeneration, and distribution of either species in the natural environment.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:41:42Z (GMT). No. of bitstreams: 1
ntu-95-D87226001-1.pdf: 2384920 bytes, checksum: c386d4e4b05087b6aba6cea9c0b3b628 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致 謝 1
目 錄 I
圖 目 錄 V
List of Figures VII
表 目 錄 IX
List of Tables X
中 文 摘 要 XI
Abstract XIII
縮寫表 List of Abbreviations XV
1. 前 言 Introduction 1
1.1 森林生態系的光環境 1
1.2 植物對光環境產生的適應 3
1.3 植物適應光環境的能力與植物之分佈 5
1.4 檜木在台灣的分佈及其更新的推論 7
1.5 光環境對檜木不同生活史階段之影響 9
1.6 過去對檜木林光環境的研究 11
1.7 本研究之目的與提出之假說 11
2. 研究區域概述 Site Description 13
2.1 地理位置 13
2.2 植被組成與調查經營歷史 13
2.3 實驗地點 15
3. 研究方法 Materials and Methods 18
3.1 棲蘭山區氣象環境監測 18
3.1.1 林冠外氣象環境 18
3.1.2 估算晴日太陽輻射量與PPFD之理論值 20
3.1.3 林冠下氣象環境與光量計的建立 23
3.1.4 半球面影像技術(hemispherical photography)分析林下光環境 25
3.1.5 光質的測定 26
3.2 FT與LS樣地兩種檜木小苗之比例調查 26
3.3 各樣地小苗生長位置之生長基質組成 26
3.3.1 pH值 27
3.3.2 土壤質地 (Soil texture) 27
3.3.3 土壤有機碳 (Organic Carbon, O.C.) 27
3.3.4 可交換性鹽基 (Exchangeable Bases) 28
3.3.5 陽離子交換能量 (Cation Exchange Capacity, CEC) 28
3.3.6 鹽基飽和度 (Base Saturation, BS) 28
3.3.7 有效性氮 29
3.3.8 有效性磷 29
3.3.9 有效性鉀 29
3.4 天然更新苗木的表現測定 29
3.4.1 存活率與苗高生長 29
3.4.2 形態與葉綠素含量 30
3.4.3 光合作用光反應曲線 31
3.4.4 統計分析 32
3.5 溫室中不同透光環境下苗木的比較 33
3.5.1 溫室中不同透光環境之建立 33
3.5.2 小苗來源與培育方法 34
3.5.3 苗木在溫室內不同透光組下之生長與形態 35
3.5.4 統計分析 35
3.6 生長箱中不同光量環境下小苗的比較 36
3.6.1 苗木來源與培育環境 36
3.6.2 光合作用特性 37
3.6.3 葉相對生長率 37
3.6.4 統計分析 41
4. 結果 Results 42
4.1 棲蘭山區的氣象環境概況 42
4.1.1 溫度雨量之年間與季節變化 42
4.1.2 雲霧和風向的季節性變化 46
4.1.3 棲蘭山區的光環境 48
4.2 扁柏林冠下之氣象與光環境 58
4.2.1 林冠下層之氣象與光量變化 58
4.2.2 林冠內外之紅光與遠紅光比例 69
4.2.3 天然生長之扁柏和紅檜小苗上光量比較 70
4.3 四個樣地之小苗發生位置表土組成 75
4.4 FT與LS樣地之兩種檜木小苗的比例 76
4.5 檜木小苗對不同光量環境的反應 77
4.5.1 檜木小苗在自然生育地之存活率與生長 77
4.5.2 檜木小苗在溫室不同透光環境之存活率與生長 78
4.5.3 形態 80
4.5.4 葉綠素含量 85
4.5.5 檜木小苗之針狀葉與鱗狀葉比較 87
4.5.6 光合作用特質 89
4.5.7 葉片相對生長率 92
5. 討 論 Discussion 97
5.1 棲蘭山區雲霧帶檜木林之氣候特性 97
5.1.1 雨量分佈 97
5.1.2 季節性 98
5.1.3 雲霧 98
5.2 雲霧大幅降低光量並造成光質的改變 100
5.2.1 CLIRAD-SW輻射傳遞模式估算晴日理論光量之誤差 100
5.2.2 棲蘭山區雲霧對光量降低之效應 100
5.3 檜木林林冠下光環境 102
5.3.1 林下光量之測量法比較 102
5.3.2 斑光 103
5.3.3 光質 104
5.4 扁柏與紅檜小苗對光環境之適應 105
5.4.1 自然生育地之光量 105
5.4.2 紅檜與扁柏小苗在自然生育地的存活率與生長 106
5.4.3 光量對紅檜和扁柏小苗存活率與生長的影響 107
5.4.4 小苗在形態上對低光環境的適應 110
5.4.5 在不同光環境下小苗的光合作用特性和葉片生長 111
5.4.6 雲霧的可能影響 112
5.5 其他可能的影響因子 114
6. 結論 Conclusions 116
7. 引用文獻 Literatures Cited 118
8. 附錄 Appendix 127
dc.language.isozh-TW
dc.subject紅檜zh_TW
dc.subject扁柏zh_TW
dc.subject小苗建立zh_TW
dc.subject雲霧林zh_TW
dc.subject耐陰性zh_TW
dc.subject光環境zh_TW
dc.subject棲蘭山區zh_TW
dc.subject霧zh_TW
dc.subjectfogen
dc.subjectChamaecyparis obtusa var. formosanaen
dc.subjectChamaecyparis formosensisen
dc.subjectestablishment of seedlingsen
dc.subjectlight environmenten
dc.subjectshade toleranceen
dc.subjectcloud foresten
dc.title光環境對臺灣棲蘭山區亞熱帶雲霧林內兩種檜木小苗生長與建立之影響zh_TW
dc.titleEffects of light environment on the growth and establishment of the seedlings of two Chamaecyparis species in the subtropical cloud forest in Chi-lan-shan area, Taiwanen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.coadvisor周昌弘(Chang-Hung Chou)
dc.contributor.oralexamcommittee謝長富(Chang-Fu Hsieh),高文媛(Wen-Yuan Kao),郭耀綸(Yau-Lun Kuo),Achim Walter(Achim Walter)
dc.subject.keyword扁柏,紅檜,小苗建立,光環境,耐陰性,雲霧林,霧,棲蘭山區,zh_TW
dc.subject.keywordChamaecyparis obtusa var. formosana,Chamaecyparis formosensis,establishment of seedlings,light environment,shade tolerance,cloud forest,fog,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2006-12-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved