Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31283Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭淑芬 | |
| dc.contributor.author | Ya-Han Chang | en |
| dc.contributor.author | 張雅涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:40:26Z | - |
| dc.date.available | 2008-01-01 | |
| dc.date.copyright | 2007-01-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-01-05 | |
| dc.identifier.citation | 1. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y., Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579.
2. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem., Int. Ed. 1999, 38, 56. 3. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834. 4. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548. 5. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024. 6. Chiang, C. W.; Wang, A. Q.; Wan, B. Z.; Mou, C. Y., High catalytic activity for CO oxidation of gold nanoparticles confined in acidic support Al-SBA-15 at low temperatures. J. Phys. Chem. B 2005, 109, 18042. 7. Muller, C. A.; Schneider, M.; Mallat, T.; Baiker, A., Titania-silica epoxidation catalysts modified by polar organic functional groups. J. Catal. 2000, 189, 221. 8. Luan, Z. H.; Bae, J. Y.; Kevan, L., Vanadosilicate mesoporous SBA-15 molecular sieves incorporated with N-alkylphenothiazines. Chem. Mater. 2000, 12, 3202. 9. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S., Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica. J. Phys. Chem. B 2001, 105, 8356. 10. Hartmann, M., Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 2005, 17, 4577. 11. Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P. D.; Somorjai, G. A., Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027. 12. Crudden, C. M.; Sateesh, M.; Lewis, R., Mercaptopropyl-modified mesoporous silica: A remarkable support for the preparation of a reusable, heterogeneous palladium catalyst for coupling reactions. J. Am. Chem. Soc. 2005, 127, 10045. 13. Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y., Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commun. 2002, 752. 14. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. F., Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763. 15. Han, Y. J.; Kim, J. M.; Stucky, G. D., Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 2000, 12, 2068. 16. Kang, H.; Jun, Y.; Park, J. I.; Lee, K. B.; Cheon, J., Synthesis of porous palladium superlattice nanoballs and nanowires. Chem. Mater. 2000, 12, 3530. 17. Huang, M. H.; Choudrey, A.; Yang, P. D., Ag nanowire formation within mesoporous silica. Chem. Commun. 2000, 1063. 18. Stanley, W. L.; Watters, G. G.; Kelly, S. H.; Chan, B. G.; Garibaldi, J. A.; Schade, J. E., Immobilization of Glucose Isomerase on Chitin with Glutaraldehyde and by Simple Adsorption. Biotechnol. bioeng. 1976, 18, 439. 19. Shinonaga, M. A.; Kawamura, Y.; Yamane, T., Immobilization of Yeast-Cells with Cross-Linked Chitosan Beads. J. FERMENT. BIOBNG. 1992, 74, 90. 20. Bai, Z. W.; Zhou, Y. K., A novel enzyme support derived from aminated silica gel and polysuccinimide: preparation and application for the immobilization of porcine pancreatic lipase. React. Funct. Polym. 2004, 59, 93. 21. Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M., Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chem. Mater. 1994, 6, 1605. 22. Weetall, H. H., Appl. Biochem. Biotech. 1993, 41, 157. 23. Diaz, J. F.; Balkus, K. J., Enzyme immobilization in MCM-41 molecular sieve. J. Mol. Catal. B 1996, 2, 115. 24. Yiu, H. H. P.; Wright, P. A., Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J. Mater. Chem. 2005, 15, 3690. 25. Yiu, H. H. P.; Wright, P. A.; Botting, N. P., Enzyme immobilisation using siliceous mesoporous molecular sieves. Micropor. Mesopor. Mater. 2001, 44, 763. 26. Ma, H.; He, J.; Evans, D. G.; Duan, X., Immobilization of lipase in a mesoporous reactor based on MCM-41. J. Mol. Catal. B 2004, 30, 209. 27. Salis, A.; Meloni, D.; Ligas, S.; Casula, M. F.; Monduzzi, M.; Solinas, V.; Dumitriu, E., Physical and chemical adsorption of Mucor javanicus lipase on SBA-15 mesoporous silica. Synthesis, structural characterization, and activity performance. Langmuir 2005, 21, 5511. 28. Wang, Y. J.; Caruso, F., Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater. 2005, 17, 953. 29. Alonso, N.; Lopez-Gallego, F.; Betancor, L.; Hidalgo, A.; Mateo, C.; Guisan, J. M.; Fernandez-Lafuente, R., Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. J. Mol. Catal. B 2005, 35, 57. 30. Villeneuve, P.; Muderhwa, J. M.; Graille, J.; Haas, M. J., Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B 2000, 9, 113. 31. Perrin, D. D., Buffer for pH and Metal Ion Control. Chapman and Hall: London, 1974. 32. Lowry, O. H., N. J. Rosebrough, A.L. Farr and R. J. Randall,, J. Biol. Chem. 1951, 193, 265. 33. http://brc.se.fju.edu.tw/protein/analysis/amount.htm 34. Salis, A. M., D.; Ligas, S.; Casula, M. F.; Monduzzi, M.; Solinas, V.; Dumitriu, E., Physical and Chemical Adsorption of Mucor javanicus Lipase on SBA-15 Mesoporous Silica. Synthesis, Structural Characterization, and Activity Performance Langmuir 2005, 21, 5511. 35.http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/L3126 36. Llusar, M.; Monros, G.; Roux, C.; Pozzo, J. L.; Sanchez, C., One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators. J. Mater. Chem. 2003, 13, 2505. 37. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature 1994, 368, 317. 38. Yang, C. M.; Zibrowius, B.; Schmidt, W.; Schuth, F., Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem. Mater. 2004, 16, 2918. 39. Babonneau, F.; Leite, L.; Fontlupt, S., Structural characterization of organically-modified porous silicates synthesized using CTA(+) surfactant and acidic conditions. J. Mater. Chem. 1999, 9, 175. 40. M. Hetem, G. R., L. van de Ven, J. de Haan, and C. Cramers, Deactivation by Polysiloxane and Phenyl Containing Disilazane: A29Si CP-MAS NMR Study after the Formation of Polysiloxane Chains at the Surface. J. high resolut. chromatogr. chromatogr. commun. 1988, 11, 510. 41. Vinu, A.; Murugesan, V.; Hartmann, M., Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: Influence of pH and aluminum incorporation. J. Phys. Chem. B 2004, 108, 7323. 42. Vinu, A.; Murugesan, V.; Tangermann, O.; Hartmann, M., Adsorption of cytochrome c on mesoporous molecular sieves: Influence of pH, pore diameter, and aluminum incorporation. Chem. Mater. 2004, 16, 3056. 43. Blanco, R. M.; Terreros, P.; Fernandez-Perez, M.; Otero, C.; Diaz-Gonzalez, G., Functionalization of mesoporous silica for lipase immobilization - Characterization of the support and the catalysts. J. Mol. Catal. B 2004, 30, 83. 44. Han, Y.; Lee, S. S.; Ying, J. Y., Pressure-driven enzyme entrapment in siliceous mesocellular foam. Chem. Mater. 2006, 18, 643. 45. Vinu, A.; Miyahara, M.; Ariga, K., Biomaterial immobilization in nanoporous carbon molecular sieves: Influence of solution pH, pore volume, and pore diameter. J. Phys. Chem. B 2005, 109, 6436. 46. Brockerhoff, H.; Jensen, R., Lipolytic Enzymes. Academic Press, NY, 1974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31283 | - |
| dc.description.abstract | 本論文研究目的為將解脂酵素(lipase)固定於介孔材料載體,並檢測其催化效果,重複使用效率及熱穩定性。所選用的載體為利用兩性高分子EO20PO70EO20(P123)界面活性劑為模版與tetraethoxysilane(TEOS)為矽源,在酸性條件下合成之介孔SBA-15分子篩以及表面修飾有機官能基之SBA-15,包含修飾單一胺基或苯基以及同時修飾以上兩種官能基之SBA-15。其中,含胺基之SBA-15比較了兩種製備方法,分別是以嫁接法或是以TEOS與3-aminopropyl- triethoxysilane (APTES)共沉澱所合成,其它含官能基之SBA-15則由TEOS、APTES與phenyltriethoxysilane(PTES)等矽源以共沉澱法合成,接著將介孔材料加入酵素的水溶液中以進行酵素的吸附。研究發現,若改變吸附酵素環境之pH值,無論是哪種載體,最大的吸附量皆於酵素等電點(約pH 4.7)附近,而純矽之SBA-15及含有苯基之SBA-15對於解脂酵素有較大負載量,推測酵素與載體之間的作用力來自於庫倫力及疏水作用力。
酵素吸附於介孔分子篩後,可再進行後處理,嘗試以不同方式固定酵素:一為將吸附了酵素的SBA-15,另外再以PTES進行後處理,此為包覆法;另一為將吸附了酵素的含有苯基之SBA-15,再以戊二醛進行交聯反應(cross-linking)。最後利用三乙酸甘油酯(triacetin)的水解反應來測試各種已固定化酵素之活性,並對其重複使用之效率及熱穩定性進行試驗。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:40:26Z (GMT). No. of bitstreams: 1 ntu-95-R93223004-1.pdf: 1812764 bytes, checksum: d44bbf53770e26c622c63046d060ba77 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 緒論 1
1.1 界面活性劑簡介 1 1.2 介孔材料簡介 4 1.3 酵素固定簡介 7 1.4 解脂酵素簡介 12 1.5 研究動機 14 第二章 實驗部份 15 2.1 化學藥品 15 2.2 介孔分子篩的製備 16 2.3 樣品之鑑定與分析 19 2.4 將解脂酵素(lipase)固定於介孔材料(Immobilization) 25 2.5 解脂酵素固定於介孔材料之後修飾 27 2.6 酵素活性測試 28 第三章 結果與討論 32 3.1 介孔材料結構鑑定與分析 32 3.2 酵素固定於介孔材料 48 3.2.1 改變吸附pH值 48 3.2.2 改變酵素濃度 51 3.2.3 改變吸附時間 53 3.3 介孔材料吸附酵素後之鑑定與分析 55 3.3.1 以物理吸附法固定酵素 55 3.3.2 後修飾 64 3.4 酵素活性測試 68 第四章 結論 75 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 解脂酵素 | zh_TW |
| dc.subject | 介孔SBA-15 | zh_TW |
| dc.subject | 酵素固定化 | zh_TW |
| dc.subject | Mesoporous SBA-15 | en |
| dc.subject | Lipase | en |
| dc.subject | Immobilization | en |
| dc.title | 解脂酵素固定於介孔SBA-15分子篩之製備及應用 | zh_TW |
| dc.title | Immobilization and Application of Lipase Enzyme in Mesoporous SBA-15 Molecular Sieve | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張文章,羅禮強 | |
| dc.subject.keyword | 解脂酵素,介孔SBA-15,酵素固定化, | zh_TW |
| dc.subject.keyword | Immobilization,Lipase,Mesoporous SBA-15, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 1.77 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
