請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31281完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | I-Chi Lee | en |
| dc.contributor.author | 李亦淇 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:40:19Z | - |
| dc.date.available | 2009-01-24 | |
| dc.date.copyright | 2007-01-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-01-05 | |
| dc.identifier.citation | 1. Fu FH, Harner CD, Johnson DL, Miller MD, Woo SLY. Biomechanics of knee ligaments. J. Bone Joint. Surg 1993;75A:1716-1727
2. Pennisi E. Tending tender tendons. Science 2002;295:1011 3. Fu FH, Bennett CH, Lattermann C, Menetrey J, Lattermann C. 1999. Current trends in anterior cruciate ligament reconstruction, part I. Biology and biomechanics of reconstruction. Am. J. Sports Med. 27: 821–30 4. Weitzel PP, Richmond JC, Altman GA, Calabro T, Kaplan DL. 2002. Future direction of the treatment of ACL ruptures. Orthop. Clin. North Am. 33:653–61 5. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, et al. 1993. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am. J. Sports Med. 21:176–85 6. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. 1984. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Jt. Surg. 66:344–52 7. Woo SLY, Buckwalter JA, eds. 1988. Injury and Repair of the Musculoskeletal Soft Tissues, pp. 45–101. Park Ridge, IL: Am. Acad. Orthop. Surg. 8. Vunjak-Novakovic G, Altman G., Horan R, Kaplan DL. Tissue engineering of ligaments. Annual Review of Biomedical Engineering 2004;6:131-56 9. Woo SLY, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH. Tissue engineering of ligament and tendon healing. Clin. Orthop. Relat. Res 1999;367 Suppl.:S312–23 10. Olson EJ, Kang JD, Fu FH, Georgescu HI, Mason GC, Evans CH. The biochemical and histological effects of artifi-cial ligament wear particles: in vitro and in vivo studies. Am. J. Sports Med 1988;16:558–70 11. Chen EH, Black J. Materials design analysis of the prosthetic anterior cruciate ligament. J. Biomed. Mater. Res. 1980;14:567–86 12. Woo SL-Y, Adams DJ. The tensile properties of human anterior cruciate ligament (ACL) and ACL graft tissues. See Ref. 1990;135: pp. 279–89 13. Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Jt. Surg. 1976;58:1074–82 14. Woo SL-Y, Young E, Kwan M. Fundamental studies in knee ligament mechanics. See Ref. 1990;135: 115–34 15. Goulet F, Germain L, Rancourt D, Caron C, Normand A, Auger FA. Tendons and ligaments. In: Lanza R, Langer R, Chick W, editors. Principles of tissue engineering. Austin, TX: RG Landes Co. and Academic Press; 1997. p 633–643. 16. Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA Jr. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1999;1:19–46. 17. Bramono DS, Richmond JC, Weitzel PP, Chernoff H, Martin I, et al. Characterization of mRNA levels for matrix molecules and proteases in ruptured human anterior cruciate ligaments utilizing quantitative real-time RT-PCR. 2004;Int. Symp.Ligaments Tendons, 4th, San Francisco,4:34 18. Minguell JJ, Erices A, Conget P, Mesenchymal stem cells. Experimental Biology & Medicine. 2001;226(6):507-20 19. Owen M. Lineage of osteogenic cells and their relationship to the stromal system. Bone and mineral research 1985;3: 1–25 20. Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematology & Blood Transfusion. 1980;25:19-29 21. Owen M. Marrow stromal stem cells. J Cell Sci 1988;Suppl 10:63 22. Dexter TM. Stromal cell associated haemopoiesis. J Cell Physiol 1982;Suppl 1:87 23. Hanada K, Dennis JE, Caplan AI Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 1997;12:1606 24. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528 25. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143 26. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278–294 27. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: A simple colony-formaing assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275–281 28. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth propierties and osteogenic potential of human marrow stromal cells. J Cell Biochem 1999;75:424–436 29. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181:67–73 30. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996;166:585–592 31. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells and stromal cells. J Cell Physiol 1998;176:57–66 32. Klein G. The extracellular matrix of the hematopoietic microenvironment. Experientia 1995;51:914–926 33. Reese JS, Koc ON, Gerson SL. Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 1999;8:515–523 34. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34 (+) hematopoietic progenitor cells. J Cell Physiol 2000;184:58–69 35. Prockop, DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–74 36. Chichester CO, Ferna´ndez M, Minguell JJ. Extracellular matriz gene expresio´n by human bone marrow stroma and by marrow fibroblast. Cell Adhes Commun 1993;1:93–99 37. Minguell JJ. Is hyaluronic acid the “organizer” of the extracellular matrix in marrow stroma? Exp Hematol 1993;21:7–8 38. Yamazaki M, Nakajima F, Ogasawara A, Moriya H, Majeska RJ, Einhorn TA. Spatial and temporal distribution of CD44 and osteopontin in fracture callus. J Bone Joint Surg Br 1999;81:508–515 39. Thomas GP, Haj AJ. Bone marrow stromal cells are load responsive in vitro. Calcified Tissue International 1996;58(2):101-8. 40. Aaron RK, Ciombor DM. Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. Journal of Orthopaedic Research 1996;14(4):582-9. 41. Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Oota T, Kameyama K, Itoman M. Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound. Biochemical & Biophysical Research Communications 2000;268(1):216-20. 42. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 2000;88:203–9. 43. Kim SG, Akaike T, Sasagawa T, Atomi Y, Kurosawa H. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 2002;27:139–44. 44. Griesven MV, Zeichen J, Skutek M, Barkhausen T, Krettek C, Bosch U. Cyclic mechanical strain induces NO production in human patellar tendon fibroblast—a possible role for remodeling and pathological transformation. Exp Toxic Pathol 2003;54:335–8. 45. Weyts FA, Bosmans B, Niesing R, Leeuwen JP, Weinans H. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 2003;72:505–512. 46. Brighton CT, Strafford B, Gross SB, Leatherwood DF, Williams JL, Pollack SR. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg 1991; 73:320–331. 47. Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R. Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng 2001;7:717–728. 48. Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biology 2004;23(5):323-9. 49. Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC. Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant Proc 2005;37:276-9. 50. Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol 2004;36:714-27. 51. Mironov SL, Dolgaya EV. Surface charge of mammalian neurons as revealed by microelectrophoresis. J Membrane Biol 1985;86:197-202. 52. Slivinsky GG, Hymer WC, Bauer J, Morrison DR. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 1997;18: 1109-1119. 53. Hashimoto N, Fujita S, Yokoyama T, Ozawa Y, Kingetsu I, Kurosaka D, Sabolovic D, Schuett W. Cell electrophoretic mobility and glycerol lysis of human erythrocytes in various diseases. Electrophoresis 1998;19:1227-30. 54. Mehrishi JN, Bauer J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 2002;23:1984-94. 55. Haydon DA, Seaman GVF. Electrokinetic studies on the ultrastructure of the human erythrocyte. I. Electrophoresis at high ionic strengths--the cell as a polyanion. Arch Biochem Biophys 1967;122:126-135. 56. Levine S, Sharp kA, Brooks DE. Theory of the electrokinetic behavior of human erythrocytes. Biophys. 1983;42:127-135. 57. Hsu JP, Hsieh TS, Huang SW, Young TH, Hu WW. Electrophoretic behavior of cerebellar granule neurons. Electrophoresis 2002;23:2001–2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31281 | - |
| dc.description.abstract | 前十字韌帶,位在膝關節的關節腔內,對於膝蓋的穩定性相當重要。然而不幸的,它也是最容易受傷的關節腔內韌帶。目前在臨床上的治療方式是利用組織重建的方法,包含自體移植、異體移植及異種移植,或是以人造材料取代。然而這些外科手術的替代方法均無法提供長期使用上的滿足。因此,前十字韌帶的高受傷比率、非常低的自我修復率及目前臨床上處理方法的限制均成為促使此研究進入韌帶組織工程階段的動力。間葉幹細胞可以分化為多種非血球族系的細胞,包含骨頭細胞、軟骨細胞及韌帶細胞等。即使在老化的個體中,骨髓仍然易於取得並且仍能包含生物合成的活化前驅物及多重分化的細胞。此研究包含韌帶組織工程的以下幾個部分,分離及鑑定前十字韌帶細胞及間葉幹細胞;找尋合適的機械拉力以促進間葉幹細胞中與前十字韌帶細胞的細胞外間質相關之基因表現;提供合適的生理調節訊號誘導間葉幹細胞分化為韌帶細胞。
在第一章中,我們簡介了間葉幹細胞的發展及其特性,此外,我們也介紹了前十字韌帶組織工程之發展與當今待需解決之問題。 韌帶具有獨特的分子、結構及機械等複和性質,然而,卻沒有一個獨特的標記可以用來區分韌帶及其他組織。因此,發展一個良好的技術以用來區分前十字韌帶及間葉幹細胞在前十字韌帶的組織工程發展上是相當重要的。在第二章中,本研究之目的之一即是區分間葉幹細胞及前十字韌帶細胞,以在之後應用於將間葉幹細胞誘導分化為前十字韌帶細胞之鑑定。令人驚訝的,細胞電泳可以成功的區分間葉幹細胞與前十字韌帶細胞。雖然許多傳統方法例如細胞流式儀,細胞免疫化學染色,及RT-PCR等方法已被廣泛用來觀測不同細胞的特徵蛋白或基因表現,這些方法卻無法用在區分間葉幹細胞及前十字韌帶細胞。此外,這些傳統的鑑定方法不但耗費金錢且必須浪費許多時間。細胞電泳可量測細胞的移動性,我們認為可用來觀測間葉幹細胞及前十字韌帶細胞的表面電荷的差異。雖然細胞電泳無法用來觀察單一特性蛋白的表現,卻可以反應出細胞膜表面的淨電荷密度,而其變化則會受到週邊膜蛋白之遊離官能基的影響而發生改變。因此我們認為,由於細胞電泳易於操作,可以視為一個輔助細胞鑑定的有用工具。 間葉幹細胞分化到下游細胞的途徑受到多重因素的影響,例如生長因子的添加,細胞激素的分泌及賀爾蒙等。機械力已被證明對於韌帶、骨頭及軟骨的傷口癒和及重建有所影響。許多文獻已探討機械力在多種細胞所發生的效應,然而,卻鮮少有機械力對於間葉幹細胞分化的討論。 在第三章中,為觀察機械力的刺激與間葉幹細胞分化趨勢之間的關連性,我們觀察了在未添加生長及誘導分化等因子的狀況下,間葉幹細胞在3%及10%兩種拉伸條件下,骨頭、肌腱韌帶、及軟骨等三種細胞的細胞標記的表現。結果顯示兩種機械拉力均無法誘導間葉幹細胞分化為軟骨細胞。然而,在較低的拉力下骨頭系的標記均會被向上調節,而肌腱/韌帶系的標記則在較高的拉力條件時被向上調節。因此,第三章的研究顯示出機械拉力是個有效的因子可用來刺激間葉幹細胞往骨頭或肌腱/韌帶發展的早期分化途徑。 再者,雖然誘導間葉幹細胞往多種細胞分化的機制已經相當清楚,誘導間葉幹細胞往韌帶分化的機制卻仍不明確。將間葉幹細胞誘導成韌帶細胞會受到多重因素的影響,過去的文獻指出機械拉力對前十字韌帶在受傷後的復原及重建有明顯的效應,且也有文獻指出共同培養系統可將間葉幹細胞誘導成不同的下游細胞。因此,在第四章中,我們觀察了間葉幹細胞在三組誘導分化系統中,韌帶細胞的主要組成的細胞外基質-型一膠原蛋白,型三膠原蛋白及tenascin-C等基因表現的改變。此外,延續第二章的研究,我們也用細胞電泳的技術及觀察間葉幹細胞蛋白的基因表現來分析在三組誘導分化系統下,間葉幹細胞的分化行為。在此研究中,第一組誘導分化系統為將間葉幹細胞與前十字韌帶細胞進行共同培養;第二組誘導分化系統為施予機械拉力於間葉幹細胞;第三組誘導分化系統為將間葉幹細胞與前十字韌帶細胞進行共同培養後再施予機械拉力。 結果顯示出在與前十字韌帶細胞的共培養系統中,前十字韌帶會釋放出特殊的調節訊號可以促進間葉幹細胞往韌帶細胞分化,而機械力則會促進韌帶主要細胞外基質的基因表現。此外,若結合機械力的刺激及共養系統的效應則有助於輔助前十字韌帶組織工程中的復原與重建。再者,此研究也顯示出細胞電泳確實可用來觀察細胞的分化行為。因此,本研究的分析對於將間葉幹細胞用於前十字韌帶組織之修復與重建的組織工程上將有相當大的幫助。 | zh_TW |
| dc.description.abstract | The anterior cruciate ligament (ACL), an intraarticular ligament of the knee, is important for knee stabilization. Unfortunately, it is the most commonly injured intraarticular ligament. So far, the therapeutic options to repair torn ligaments are tissue reconstruction using autograft or allograft, reparation alone or with augmentation, or replacement using a synthetic prosthesis. Unfortunately, none of these surgical alternatives provides a long-term adequate solution. Therefore, the high incidence of ACL failures, lack of capacity for self-repair, and limitations of current treatment options have driven the research into ligament tissue engineering as a new option. Mesenchymal stem cells (MSCs) can differentiate into multiple non-hematopoietic cell lineages, including osteoblasts, chondrocytes, and ligament cells. Even in older individuals, bone marrow stroma is relatively easily harvested and contains biosynthetically active precursors and multipotent cells. This study proceed with the tissue engineering of ACL involving the isolation and identification of ACL cells and MSCs, finding the appropriate mechanical stretch to promote the up-regulation of ACL cells’ ECM gene expression of MSCs, and provide the necessary biophysical regulatory signals to induce MSCs differentiation.
In Chapter 1, we introduce the development and characteristic of MSCs, besides, the progress and the problems of ACL tissue engineering are also introduced. Ligaments have a unique combination of molecular, structural, and mechanical properties, but there is no single unique marker that can be used to distinguish between ligaments and other tissues. Therefore, the development of a useful technique to discriminate ACL cells from MSCs is very important in ACL tissue engineering. In Chapter 2, the purpose of this chapter is to identify the difference between MSCs and ACL cells for the application of distinguishing theses two types of cells during the process of MSCs differentiating into ACL cells. Surprisingly, cell electrophoresis could distinguish MSCs from ACL cells successfully. Although various traditional methods such as flow cytometry, immunocytochemistry, and RT-PCR have been developed to determine the expression of specific proteins or genes to characterize different cells, they cannot be used to distinguish MSCs and ACL. In addition, using traditional methods to identify cells is not only expensive but also time consuming. Cell electrophoresis, measuring the electrophoretic mobility (EPM) of cells, is proposed to investigate the discrepancy of surface charge property of MSCs and ACL cells. Although cell electrophoresis cannot be used to determine the specific surface protein, EPM can reflect the net surface charge density of cell membrane, which can be influenced by the dissociation of functional groups of peripheral membrane proteins. It is suggested that cell electrophoresis, while simple in manipulation, can serve as a useful research tool to assist cell identification. Differentiation of MSCs into different kinds of cells is regulated by many factors, such as growth factors, cytokines, and hormones. Mechanical stretch has been shown to affect the healing and remodeling process of ligament, bone, and cartilage. Many articles have been published which discussed the effects of mechanical stretch on various cell types, however, little is known about the effects of mechanical stretch on differentiation of MSCs. In Chapter 3, in order to determine the correlation of mechanical stimulation and differentiation tendency in vitro, three groups of cell markers, bone, tendon/ligament and cartilage, are elongated on 3% and 10% using the Flexcell stress system, without addition of other growth and differentiation factors. The results reveal that mechanical stretch couldn’t induce MSCs into cartilage cell lineage. In contrast, the bone cell lineages markers are up-regulated at strains of low magnitudes and the tendon/ligament cell lineages markers are up-regulated at high magnitudes strain. Therefore, this study shows that mechanical stretch is an effective factor that could regulate the early stage differentiation pathway of MSCs into bone or ligament/tendon cell lineages. Furthermore, since most of the mechanisms of induction MSCs to desire cells are clearly understood, the induction mechanism of MSCs to ACL cells is still not obvious. Differentiation of MSCs into ACL cells is regulated by many factors. Since mechanical stress affects the healing and remodeling process of ACL after surgery significantly, co-culture system had also showed the promise to differentiate MSCs toward different kinds of cells on current research. In Chapter 4, we investigate the gene expression of major extracellular matrix component molecules of ACL cells, collagen type I, type III, and tenascin-C of MSCs under three induction groups. In addition, to follow the study on chapter 2, cell electrophoresis technique and mRNA level gene expression of MSC protein are also used to analyze the differentiation of MSCs. Group I is the MSCs co-culture with ACL cells. Group II is the MSCs exposure to mechanical stress. Group III is the MSCs exposure to mechanical stress after co-culture with ACL cells. The results reveal that specific regulatory signals releasing from ACL cells appear to be responsible for supporting the selective differentiation toward ligament cells in co-culture systems and mechanical stress promotes the secretion of key ligament ECM components. In addition, the results also reveal that combined regulation of mechanical stress and co-culture effect could assist the development of healing and remolding of ACL tissue engineering. Furthermore, this study also demonstrates that cell electrophoresis could be used in investigation of cell differentiation. Also, analysis of the data suggests the feasibility of utilizing MSCs in clinical applications for repairment or regeneration of ACL tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:40:19Z (GMT). No. of bitstreams: 1 ntu-95-D91548010-1.pdf: 3651857 bytes, checksum: 07829c1e4959d3ffe594339099c42dfe (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | CONTENTS I
TABLE V FIGURES VI 摘 要 XI ABSTRACT XIV CHAPTER 1 BACKGROUND AND LITERATURE REVIEW 1 1.1. MOTIVATION AND OBJECTIVES 1 1.2. THE TISSUE ENGINEERING TRIAD 3 1.3. ACL 4 1.3.1. The Need for Bioengineered Ligament Substitutes 4 1.3.2. The Structure and Function of ACL 4 1.4. MESENCHYMAL STEM CELLS (MSCS) 7 1.4.1. Adult Stem Cells 7 1.4.2. MSCs 7 1.4.3. The development of MSCs 8 1.4.4. Characteristics of MSCs 9 1.4.5. Differentiation of MSCs 11 1.4.6. Mechanical stress stimulation and co-culture effect 11 1.5. CELL ELECTROPHORESIS 13 1.6. REFERENCES 14 CHAPTER 2 DEVELOPMENT OF A USEFUL TECHNIQUE TO DISCRIMINATE ANTERIOR CRUCIATE LIGAMENT CELLS AND MESENCHYMAL STEM CELLS-THE APPLICATION OF CELL ELECTROPHORESIS 21 ABSTRACT 21 2.1. INTRODUCTION 22 2.2. MATERIALS AND METHODS 25 2.2.1. Isolation and Growth of MSCs 25 2.2.2. Isolation and Growth of ACL cells from human and New Zealand rabbit 25 2.2.3. Flow Cytometry 26 2.2.4. Immunocytochemistry 26 2.2.5. Real-time quantitative reverse transciptase polymerase chain reaction (RT-PCR) 27 2.2.6. Assessment of cell electrophoretic mobility 28 2.3. RESULTS AND DISCUSSION 29 2.3.1. Cell Morphology 29 2.3.2. Flow cytometry 29 2.3.2. Immunocytochemistry 30 2.3.3. Real-time Quantitative RT-PCR 30 2.3.4. Electrophoretic Analysis 32 2.4. CONCLUSION 34 2.5. REFERENCES 35 CHAPTER 3 EFFECTS OF MECHANICAL STRETCH ON DIFFERENTIATION OF MESENCHYMAL STEM CELL 41 ABSTRACT 41 3.1. INTRODUCTION 43 3.2. MATERIALS AND METHOD 45 3.2.1. Isolation and Growth of MSCs 45 3.2.2. Flow Cytometry 45 3.2.3. Mechanical stretch application 46 3.2.4. RNA isolation 46 3.2.5. Real-time quantitative RT-PCR 47 3.2.6. Reverse transciptase polymerase chain reaction (RT-PCR) 47 3.3. RESULTS 49 3.3.1. Flow cytometry analysis 49 3.3.2. Cell morphology and orientation 49 3.3.3. Expression of mesenchymal stem cell protein (MSCP) 50 3.3.4. Expression of ligament-related and cartilage-related genes 50 3.3.5. Expression of osteoblast-related genes 51 3.4. DISCUSSION 53 3.5. CONCLUSION 56 3.6. REFERENCES 57 CHAPTER 4 THE DIFFERENTIATION OF MESENCHYMAL STEM CELLS BY MECHANICAL STRESS OR/AND CO-CULTURE SYSTEM 63 ABSTRACT 63 4.1. INTRODUCTION 64 4.2. MATERIALS AND METHOD 67 4.2.1. Isolation and Growth of MSCs 67 4.2.2. Isolation and Growth of ACLs 67 4.2.3. Flow Cytometry 68 4.2.4. Co-Culture Protocol 68 4.2.5. Mechanical stretch application 69 4.2.6. Real-time quantitative reverse transciptase polymerase chain reaction (RT-PCR) 69 4.2.7. Assessment of Cell Electrophoretic Mobility 70 4.3. RESULTS 72 4.3.1. Flow Cytometry Analysis 72 4.3.2. Cell Morphology and Orientation 72 4.3.3. Expression of ACL-Related Genes 73 4.3.4. Electrophoretic Analysis 74 4.4. DISSCUSSION 76 4.5. CONCLUSION 79 4.6. REFERENCES 80 CHAPTER 5 CONCLUSION AND FUTURE WORK 84 APPENDIX 1-PREPARATION OF PLLA MEMBRANES WITH DIFFERENT MORPHOLOGIES FOR CULTURE OF LIGAMENT CELLS 104 ABSTRACT 104 AP1.1. INTRODUCTION 105 AP1.2. MATERIALS AND METHODS 107 AP1.2.1. PLLA Membrane Fabrication 107 AP1.2.2. Cell Culture 107 AP1.2.3. Membrane Surface Modification and Cell Seeding 108 AP1.2.4. MTT Assay 108 AP1.2.5. Cell Morphology 109 AP1.3. RESULTS AND DISCUSSION 110 AP1.4. CONCLUSION 112 AP1.5. REFERENCES 113 APPENDIX-2 THE BEHAVIOR OF MESENCHYMAL STEM CELLS ON MICROPATTERNED PLLA MEMBRANES 121 ABSTRACT 121 AP2.1. INTRODUCTION 122 AP2.2. MATERIALS AND METHODS 124 AP2.2.1. Master 124 AP2.2.2. Elastomer Stamp 124 AP2.2.3. Surface-Micropatterned Membranes 124 AP2.2.4. Isolation and Growth of MSCs 125 AP2.2.5. Flow Cytometry 126 AP2.2.6. Membrane Surface Modification and Cell Seeding 126 AP2.2.7. MTT Assay 127 AP2.2.8. Cell Morphology 127 AP2.3. RESULTS AND DISCUSSION 128 AP2.3.1. Morphological Observation of Silicone Wafer, Island-Patterned, and Sunken-Patterned PLLA Membranes 128 AP2.3.2. Flow Cytometry Analysis 129 AP2.3.3. Cell Morphology 130 AP2.3.4. MTT Assay 132 AP2.4. CONCLUSION 135 AP2.5. REFERENCES 136 ABBREVIATION 151 LIST OF PUBLICATION 152 LIST OF CONFERENCE 154 INTRODUCTION TO AUTHOR 155 | |
| dc.language.iso | en | |
| dc.subject | co-culture system | en |
| dc.subject | anterior cruciate ligament (ACL) | en |
| dc.subject | Mesenchymal stem cells (MSCs) | en |
| dc.subject | cell electrophoresis | en |
| dc.subject | mechanical stress | en |
| dc.title | 將細胞電泳技術應用在使用機械力及/或共培養系統
誘導間葉幹細胞分化之觀察 | zh_TW |
| dc.title | The application of cell electrophoresis on the analysis of differentiation of mesenchymal stem cells induced by
mechanical stress and/or co-culture system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭廖平,宋信文,何弘能,游正博,林佳靜,徐治平 | |
| dc.subject.keyword | 前十字韌帶細胞,間葉幹細胞,細胞電泳,機械拉力,共同培養系統, | zh_TW |
| dc.subject.keyword | anterior cruciate ligament (ACL),Mesenchymal stem cells (MSCs),cell electrophoresis,mechanical stress,co-culture system, | en |
| dc.relation.page | 155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
