Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹培熙(Pei-Hsi Tsao)
dc.contributor.authorWei-Lun Changen
dc.contributor.author張維倫zh_TW
dc.date.accessioned2021-06-13T02:37:39Z-
dc.date.available2008-01-24
dc.date.copyright2007-01-24
dc.date.issued2006
dc.date.submitted2007-01-16
dc.identifier.citation[1] K.A. Valiev, The Physics of Submicron Lithography, Plenum Press, New York
(1992).
[2] Owa, H. Nagasaka and M. Switkes et al., “Extending optics to 50 nm and beyond
with immersion lithography,” J. Microlitho. Microfab. Microsys. 3 (2004) (1), p.
97.
[3] T.R. Groves and R.A. Kendall et al., “Distributed, multiple variable shaped
electron beam column for high throughput maskless lithography,” J. Vac. Sci.
Technol. B 16 (1998) (6), p. 3168.
[4] D.S. Pickard et al., “Distributed axis electron-beam system for lithography and
inspection—preliminary experimental results,” J. Vac. Sci. Technol. B 20 (2002)
(6), p. 2662.
[5] M. Muraki and S. Gotoh et al., “New concept for high-throughput multielectron
beam direct write system,” J. Vac. Sci. Technol. B 18 (2000) (6), p. 3061.
[6] J.T. Hastings et al., “Optical waveguides with apodized sidewall gratings via
spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20 (2002)
(6), p. 2753.
[7] J.T. Hastings et al., “Nanometer-level stitching in raster-scanning electron-beam
lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21 (2003) (6), p.
2650.
[8] G.M. Atkinson et al., “30nm resolution zero proximity lithography on high-z
substrates,” J. Vac. Sci. Technol. B 10 (1992), p. 3104.
[9] X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography
technique,” Appl. Phys. Lett. 84 (2004), p. 4780.
[10] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff,
“Extraordinary optical transmission through sub-wavelength hole arrays,” Nature.
391(1998), p. 667.
[11] T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen,
“Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt.
Soc. Am. B 16(1999), p. 1743.
[12] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry,
L. Martin-Moreno, and F. J. Garcia-Vidal,b “Evanescently coupled resonance in
surface plasmon enhanced transmission,” Opt. Commun.200 (2001), p. 1 .
117
[13] A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse
propagation through metallic nano-apertures,” Appl. Phys. B: Lasers Opt.
74(2002), p. S69.
[14] L. Salomon, F. Grillot, A. V. Zayats, and F. V. de Fornel, “Near-Field
Distribution of Optical Transmission of Periodic Subwavelength Holes in
a Metal Film,” Phys. Rev. Lett. 86(2001), p.1110.
[15] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength
optics,” Nature. 424(2003), p. 824.
[16] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic
Nanolithography,” Nano Lett. 4(2004), p.1085.
[17] W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang,
“Sub-100 nm lithography using ultrashort wavelength of surface plasmons,” J.
Vac. Sci. Technol. B 22, 3475 (2004).
[18] L. Xiangang and T. Ishihara, “Surface plasmon resonant interference
nanolithography technique,” Appl. Phys. Lett. 84(2004), p. 4780.
[19] K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K.
Nakajima, and T. Ohkubo, “Improvements in near-field optical performance
using localized surface plasmon excitation by a scatterer-formed aperture,” Appl.
Phys. Lett. 83(2003), p. 1083.
[20] E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon
assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(2005), p. 11106.
[21] S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of
near-field coupling in metal nanoparticle chains using far-field polarization
spectroscopy,” Phys. Rev. B 65(2002), p. 193408.
[22] Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon Resonance of Finite
One-Dimensional Au Nanoparticle Chains,” Nano Lett. 4(2004), p. 1067.
[23] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(Springer, Heidelberg, 1988), pp. 9–30.
[24] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,”
Phys. Rev. B 6(1972), p. 4370.
[25] H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks
for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72(1998), p.
2379.
[26] J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact
photolithography,” Appl. Phys. Lett. 76(2000), p. 667.
[27] J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field
embedded-amplitude masks,” Appl. Phys. Lett. 81(2002), p.1315.
[28] M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming,
“Sub-diffraction-limited patterning using evanescent near-field optical
lithography,” Appl. Phys. Lett. 75(1999), p.3560.
[29] P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, in Properties of Metal
Nanostructures, N. J. Halas, et al., “Metal nanoparticle arrays for near-field
optical lithography,” Proc. SPIE 4810(2002), p. 7.
[30] O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, “Energy flow
in light-coupling masks for lensless optical lithography,” Opt. Express 3(1998), p.
280.
[31] H. W. Deckman, J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.
41(1982), p. 377.
[32] U. C. Fischer, H. P. Zingsheim, “Submicroscopic pattern replication with visible
light,” J. Vac. Sci. Technol. B 19(1981), p. 881.
[33] H. W. Deckman, J. H. Dunsmuir, “Applications of surface textures produced
with natural lithography,” J. Vac. Sci. Technol. B 1(1983), p. 1109.
[34] C. B. Roxlo, H. W. Deckman, B. Ables, “Molecular Confinement in
Nanometer-Size Superlattice Microstructures,” Phys. Rev. Lett. 57(1986), p.
2462.
[35] H. W. Deckman, J. H. Dunsmuir, “Natural Lithographic Fabrication of
Microstructures over Large Areas,” In Patent; Exxon Research and Engineering
Co.: Florham Park, NJ, 1987.
[36] H. W. Deckman, T. D. Moustakas, “Nanolithography with an acid catalyzed
resist,” J. Vac. Sci. Technol. B 6(1988), p. 316.
[37] H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. McHenry, D.G.. Peiffer,
“Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1988), p.
333.
[38] C. L. Haynes, R. P. Van Duyne, “A Versatile Nanofabrication Tool for studies of
Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(2001), p. 5599.
[39] J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ~ 90
nanometer features using near-field contact-mode photolithography with an
elastomeric phase mask,” J. Vac. Sci. Technol. B 16(1998), p. 59.
[40] J. A. Rogers, A. Dodabalapur, Z. Bao, H. E. Kate, “Low-voltage 0.1 μm organic
transistors and complementary inverter circuits fabricated with a low-cost form
of near-field photolithography,” Appl. Phys. Lett. 75(1999), p. 1010.
[41] J.A. Rogers, R. G. Nuzzo, “Recent progress in soft lithography,” materialstoday.
8-2(2005), p. 50.
[42] S.Y. Chou et al., “Imprint Lithography with 25-Nanometer Resolution,” Science
272(1996), p. 85.
[43] S.Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci.
Technol. B 14(1996), p. 4129.
[44] S.Y. Chou, K. Chris, G. Jian, “Ultrafast and direct imprint of nanostructures in
silicon,” Nature 417(2002), p. 835.
[45] M Colburn et al., “Step and Flash Imprint Lithography: A new approach to high
resolution patterning,” Proc. SPIE 3676(1999), p. 379.
[46] B. D. Gates, “Nanofabrication with moulds and stamps,” materialstoday
8-2(2005), p. 44.
[47] L.J. Guo, “Recent progress in nanoimprint technology and its applications,”
J. Phys. D: Applied Physic. 37(2005), p. 123.
[48] D.J. Resnick et al., “Step & flash imprint lithography,” materialstoday 8-2
(2005), p. 34.
[49] J.M. Carter et al., MTL Annual report 2003.
[50] A. Chelnokov et al., “An optical drill for the fabrication of photonic crystals,” J.
Opt. A: Pure Appl. Opt. 1 (1999), p. L3.
[51] Y. Lin et al., “Design and holographic fabrication of tetragonal and cubic
photonic crystals with phase mask: toward the massproduction of
three-dimensional photonic crystals,” J. Appl. Phys. 97(2005), p. 096102.
[52] D.C. Meisel et al., “Three-dimensional photonic crystals by holographic
lithography using the umbrella configuration: Symmetries and complete
photonic band gaps,” Phys. Rev. B 70(2004), p. 165104.
[53] V.G. Minogin and J. Javanainen, “A tetrahedral light pressure trap for atoms,”
Opt. Commun. 43(1982), p. 119.
[54] M. Campbell et al., “Fabrication of photonic crystals for the visible spectrum by
holographic lithography,” Nature 404(2000), p. 53.
[55] I. Divliansky et al., “Fabrication of three-dimensional polymer photonic crystal
structures using single diffraction element interference lithography,” Appl. Phys.
Lett. 82(2003), p.1667.
[56] Y. Lin et al., “ Proposed single-exposure holographic fabrication of
microsphere-type photonic crystals through phase-mask techniques,” J. Appl.
Phys. 97(2005), p. 096102.
[57] P. K. Wei, H. L. Chou, W. L. Chang, “Diffraction-induced near-field optical
images in mesoscale air-dielectric structures,” JOSA B. 20(2003), p.1503.
[58] P. K. Wei, H. L. Chou, and Y. C. Chen, “Subwavelength focusing in the near
field in mesoscale air-dielectric structures,” Opt. Lett. 29(2004), p. 433.
[59] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon Press Ltd.,
Headington Hill Hall, Oxford, 4 & 5 Fitzroy Square, London W.1, 1970).
[60] J. D. Jackson, Classical Electrodynamics, 3rd ed. (JohnWiley & Sons, Inc.,
1998).
[61] E. Hecht, Optics, fourth ed. (Addison Wesley Longman, Inc., Reading,
Massachusetts, 2002).
[62] B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino,
“Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett.
65(1994), p. 388.
[63] M. Vollmer, H. Giessen, W. Stolz, L. Ghislain, V. Elings, “ Ultrafast nonlinear
subwavelength solid immersion spectroscopy at T = 8 K,” Appl. Phys.Lett.
74(1999), p. 1791.
[64] Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging Spectroscopy
of Two-Dimensional Excitons in a Narrow GaAs/AlGaAs Quantum Well,”
Phys. Rev. Lett. 83(1999), p. 2652.
[65] M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation, and
Applications (John Wiley & Sons, Inc., John Wiley & Sons, Inc., 605
Third Avenue, New York, NY 10158-0012, 1996).
[66] S. I. Bozhevolnyi, “Near-Field Optics of Nanostructured Surfaces,” in Optics of
Nanostructured Materials, Wiley Series in Lasers and Applications, V. A.
Markel and T. F. George, eds., (John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, 2001), Chap. Three, pp. 73–142.
[67] A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A
14(1997), p. 547.
[68] A. Yariv, “Coupled mode theory for guided wave optics,” IEEE J. Quantum
Electron. 9(1973), p. 919.
[69] D. Marcuse, “Theory of Dielectric Optical Waveguides,” 2nd ed., Academic
Press, Boston, 1991.
[70] M. D. Feit and Jr. J. A. Fleck, “Computation of mode properties in optical fiber
waveguides by a propagating beam method,” Appl. Opt .19(1980), p. 1164.
[71] H. Kogelnik, C. V. Shank, “Coupled wave theory of distributed feedback
lasers,” J. Appl. Phys. 43(1972), p. 2327.
[72] D. Yevick, B. Hermansson, “New formulation of the beam propagation method:
application of rib waveguides,” IEEE J. Quantum Electron. 25(1989), p. 221.
[73] J. Van Roey, J. Van Der Donk, and P. E. Lagasse, “Beam-propagation method:
analysis and assessment,”J. Opt. Soc. Am. A 71(1981), p. 803.
[74] K. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and
Propagation. AP-14(1966), p. 302.
[75] M. Sadiku, “Numerical Techniques in Electromagnetics,” CRC Press, 1992.
[76] A. Taflove, “Computational electrodyamics: The finite-difference time-domain
method,” 6, vol. 1995, pp. 107-144, Artech House.
[77] P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field
optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85(1999), p.
6337.
[78] R. Colombelli et al., “Quantum Cascade Surface-Emitting Photonic Crystal
Laser,” Science 302 (2003), p. 1374.
[79] O. Painter et al., “Lithographic Tuning of a Two-Dimensional Photonic Crystal
laser Array,” IEEE Photonics Technology letters. 12 (2000), p.1126.
[80] P. Russell et al., “Photonic Crystal Fibers,” Science 299 (2003), p. 358.
[81] J. Sabarinathan et al., “An electrically injected InAs/GaAs quantum-dot
photonic crystal microcavity light-emitting diode,” Appl. Phy. Lett. 81(2002), p.
3876.
[82] Y. Vlasov et al., “On-chip natural assembly of silicon photonic bandgap
crystals,” Nature 414(2001), p. 289.
[83] X. Wu et al., “Ultraviolet photonic crystal laser,’’ Appl. Phys. lett. 85(2004), p.
3657.
[84] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: Molding
the flow of light, (Princeton University Press, New Jersey, 1995).
[85] J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an
elastomeric phase mask for sub-100 nm photolithography in the optical near
field,” App. Phys. Lett. 70(1997), p. 2658.
[86] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul and G.M Whitesides,
“Improved pattern transfer in soft lithography using composite stamps,”
Langmuir 18 (2002), p. 5314.
[87] R. A. Serway, J. S. Faughn, College Physics 6th Edition. Publishin Alternatives
(2003), p. 692.
[88] S. A. Müller and A. Engel, Structure and mass analysis by scanning
transmission electron icroscopy,' Micron. 32(2001), p. 21.
[89] A. Lewis, M. Isaacson, A. Harootunian, et al., 'Development of a 500 A spatial
resolution light Microscope I. light is efficiently transmitted through l/16
diameter apertures,' Ultramicroscopy. 13(1984), p. 227.
[90] D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with
resolution /20,” Applied physics letters. 44(1984), p. 651.
[91] E. H. Synge, 'Method for extending microscopic resolution into the
ultra-microscopic region,' Philosophical magazine. 6(1928), p. 356.
[92] E. Betzig, J. K. Trautman, T. D. Harris, et al., 'Breaking the diffraction barrier:
optical microscopy of a nanometric scale,' Science. 251(1991), p. 1468
[93] L. Novotny, B. Hecht, and D. W. Pohl, 'Implications of high resolution to
near-field microscopy,' Ultramicroscopy. 71(1998), p. 341.
[94] G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control,
characterization, and optization in the fabrication of optical fibre near-field
probe,” Appl. Opt. 34(1995), p. 1215.
[95] D. R. Turner,“Etch Procedure for Optical Fibers,”,'United States patent
4,469,554,' in AT&T Bell laboratories. Murray Hill, NJ. USA, 1983.
[96] P. Hoffmann, P. Dutoit, and R. P. Salah, “Comparison of mechanically drawn
and protection layer chemically etched fiber tip,” Ultramicroscopy. 61(1995), p.
165.
[97] T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field
optical fiber probe over 1000 times by the use of a triple-tapered structure,”Appl.
Phy. Lett. 73(1998), p. 2090.
[98] P. K. Wei, Y.E. Chen, and H. L. Kuo, “Systematic variation of polymer jacketed
fibres and the effects on tip etching dynamics,” J. Microscopy. 210(2002), p.
334.
[99] M. H. P. Moers, 'Near-field optical microscopy.' Dissertation: Universiteit
Twente, 1995, pp. 111.
[100] Y. Leviatan, 'Study of near-zone fields of a small aperture,' J. Appl. Phys.
60(1986), p. 1577.
[101] E. Betzig and J. K. Trautman, 'Near-field optics: microscopy, spectroscopy, and
surface modification beyond the diffraction limit,' Science, 257(1992), p. 189.
[102] J. W. P. Hsu et al., 'Near-field scanning optical microscopy studies of electronic
and photonic materials and devices,' Materials science and engineerin, 33(2001),
p. 1.
[103] S. Kirstein, 'Scanning near-field optical microscopy,' Science 4(1999), p. 256.
[104] M. De Serio, R. Zenobi, and V. Deckert, 'Looking at the nanoscale: scanning
near-field optical microscopy,' Trends in analytical chemistry, 22(2003), p. 70.
[105] K. Karrai and R. D. Grober, 'Piezo-electric tuning-fork tip-sample distance
control for near-field optical microscopies,' Ultramicroscopy, 61(1995), p. 197.
[106] A. L. Campillo, J. W. P. Hsu, G. W. Bryant, “Local imaging of photonic
structures: image contrast from impedance mismatch,” Opt. Lett. 27(2002), p.
415.
[107] K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric
microcavity,” Nature, 424(2003), p. 839.
[108] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.Dapkus, I. Kim,
“Two-dimensional photonic band-gap defect mode laser,' Science, 284(1999), p.
1819.
[109] M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation
through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl.
Phys. Lett. 76(2000), p.952.
[110] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura. T. Sato, S.
Kawakami, “Photonic crystals for micro lightwave circuits using
wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(1999), p.
1370.
[111] L. Wu, M, Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, R. M. De La Rue,
“Planar photonic crystal polarization splitter,” Opt. Lett. 29(2004), p. 1620.
[112] S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single
defect in a photonic bandgap structure,” Nature, 407(2000), p. 608.
[113] V. Berger, O. Gauthier-Lafaye, E. Costard, 'Photonic band gaps and
holography,' J. Appl. Phys. 82(1997), p. 60.
[114] S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa,
“Optical characterization of photonic crystal delay lines based on
one-dimensional coupled defects,” Opt. Lett. 27(2002), p. 2079.
[115] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. E. Joannopoulos, E. P. Ippen, G.
S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation
using a two-dimensional photonic crystal in a semiconductor light-emitting
diode,” Appl. Phys. Lett. 78(2001) p. 563.
[116] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old
Materials with New Applications,” Adv. Mater., 12(2000), p. 693.
[117] H. Schift, S. Park, B. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B.Yoon, and J.
Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint
lithography,” Nanotechnology 16(2005), p. 261.
[118] S. Y. Chou, P. R. Krauss, and P. J. Rentstrom, “Imprint of sub-25 nm vias and
trenches in polymers,” Appl. Phys. Lett. 67(1995), p. 3114.
[119] F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, “Realization of optical
superlens imaging below the diffraction limit,” Science 308(2005), p. 534.
[120] P. K. Wei, S. Y. Chiu, and W. L. Chang, “Determination of Mesoscale
Crystallization by Collection-Mode Polarization Modulated Near-Field Optical
Microcopy,” Rev. Sci. Instrum. 73(2002), p. 2624.
[121] H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A.
Alkemade, H. Blok, G. W. &. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted
Two-Slit Transmission: Young’s Experiment Revisited” Phys. Rev. Lett. 94(2005),
p. 053901.
[122] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary
optical transmission through sub-wavelength hole arrays,” Nature 39(1998), p.
667.
[123] D. A. Higgins, D. A. Vanden Bout, J. Kerimo and P. F. Barbara,
“Polarization-modulation near-field scanning optical microscopy of
mesostructured materials,” J. Phys. Chem. 100(1996), p. 13794.
[124] S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa and H. Misawa, “Two-photon
lithography of nanorods in SU-8 photoresist,” Nanotechnology 16 (2005), p.
846.
[125] K. Takada, H. B. Sun and S. Kawata, “Improved spatial resolution and surface
roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett.
86(2005), p. 071122.
[126] C. F. Madigan, M. H. Lu, J. C. Sturm, “Improvement of output coupling
efficiency of organic light-emitting diodes by backside substrate modification,”
Appl. Phys. Lett. 76(2000), p. 1650.
[127] S. Moiller, S. R. Forrest, “Improved light out-coupling in organic light emitting
diodes employing ordered microlens arrays,” J. Appl. Phys. 91(2002), p. 3324.
[128] J. Kim, K. H. Jeong, L. P. Lee, “Artificial ommatidia by self-aligned
microlenses and waveguides,” Opt. Lett. 30(2005), p. 5.
[129] M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O.
Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by
soft-lithography replication process,” Appl. Phys. Lett. 82(2003), p. 1152.
[130] H. J. Nam, D.Y. Jung, G. R. Yi, and H. Choi, “Close-packed hemispherical
microlens array from two-dimensional ordered polymeric microspheres,”
Langmuir 22(2006), p. 7358.
[131] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R.
V¨olkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive
microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8
(2006), p.S407.
[132] M. Fritze, M. B. Stern and P. W. Wyatt, “Laser-fabricated glass microlens
arrays,” Opt. Lett. 23(1998), p. 141.
[133] M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens
arrays,” Opt. Eng. 33(1994), p. 3547.
[134] K. Kaneko, H. B. Sun, X .M. Duan and S. Kawata, “Submicron diamond-lattice
photonic crystals produced by two-photon laser nanofabrication,” Appl. Phys.
Lett. 83(2003), p.2091.
[135] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch and C. M.
Soukoulis, 'Direct laser writing of three-dimensional photonic-crystal templates
for telecommunications,” Nat. Mater. 3(2004), p. 444.
[136] V. Mizeikis, K. K. Seet, S. Juodkazis and H. Misawa, “Three-dimensional
woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett.
29(2004), p. 2061.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31237-
dc.description.abstract微影技術在現代的科學研究和工業應用上,扮演著舉足輕重的角色,而光學微
影又是微影技術中的主流研究,亦可說是科技發展的推手。
然而光學微影技術受限於繞射限制,已逐漸面臨做到最小尺寸的極限。目前已
知在近場範圍下,可突破此限制。 因此,我們進一步研究出一套全新的近場微影技
術,此技術是利用光在介電結構邊緣產生的繞射現象,透過有限時域差分法(FDTD)
的模擬以及近場光學顯微儀(NSOM)的量測方法,我們發現邊緣繞射光在很小尺寸的
介電結構中會產生聚焦效果。利用此聚焦效果在微影上,可以在光阻層大量製作出
次波長結構。這個技術的最大優點在於使用簡易、製作方便,而且製作出的次波長
結構的品質很高,特別是光子能隙(PBG)結構。
在本論文中,提出了微影方法上四種創新的構想和技術。透過四種不同的次波
長光罩的設計,將之應用在近場微影上,而微影的結果也印證了我們技術的可行性。
將此四種技術簡述如下:
(1)我們發展出可以製作次波長尺寸且具有高深寬比的四角形和六角形週期性結構
之技術。光罩被設計成四角形或六角形的柱狀結構,柱狀的厚度是0.2 微米,柱
狀的直徑是0.3 微米,周期大約是在柱狀直徑的兩倍下,會有最佳的聚焦效果。
在近場曝光下可以產生高深寬比的四角形或六角形次波長尺寸的光阻結構。研究
結果也發現較高對稱性的幾何結構有較好的聚焦效果,即六角形柱狀結構的聚焦
效果優於四角形柱狀結構。這個聚焦光束的長度可大於1 微米,寬度則可小於波
長0.3 微米。
(2)我們發展出可以製作次波長尺寸的PBG 結構且可設計成任意缺陷形式之技術。目
前廣受應用的2 維PBG 結構大部分都是被設計成破壞週期性結構的缺陷結構,然
而要以光學的方式來製作缺陷的PBG 結構並不容易。我們設計的光罩是週期性的
六角形柱狀結構,去除點或行變成缺陷形式的週期結構,在近場曝光下可以製作
出缺陷形式的PBG 光阻結構。經由FDTD 的模擬和NSOM 的量測結果,可得知光罩
IV
上的缺陷結構在近場範圍下,並不影響其聚焦光束的特性,因此,透過近場微影
的方法,可以在光阻層大量製作缺陷形式的PBG 結構,同時利用蝕刻的技術,可
完美轉印在矽基板上。
(3)我們發展出可大量製造小於100 奈米線寬的近場微影技術。這個技術的成功關鍵
在於光罩上小於100 奈米的介電結構的聚光效果與極化方向有直接的關聯。利用
FDTD 模擬與NSOM 的量測結果得知:小於100 奈米的介電結構的聚光效果是由TE
偏振光所造成。依據此結果,我們使用TE 偏振光在近場下曝光,可以做出80
奈米的線寬,當雷射光的波長為442 奈米時,可達到小於1/5 波長的解析度。
(4)我們發明一種等向性的蝕刻方法,可以製作六角最密堆積的次微米透鏡陣列,來
當作近場曝光的光罩去大量製造3 維結構。這個構想是起源於研究柱狀結構與球
狀結構對聚光效果的影響。此種方法是利用鎳金屬的柱狀結構當作蝕刻的光罩,
使用乾式蝕刻,當玻璃基板含金屬雜質高時,會形成等向蝕刻玻璃和金屬光罩。
在適當的蝕刻時間控制下,等向蝕刻玻璃會形成半球狀。此半球狀的六角最密堆
積結構經由NSOM 量測和FDTD 的模擬結果,可得知具有次波長的聚焦效果。我們
比較柱狀結構與球狀結構在2 維對聚光的效果來看,發現球狀結構聚焦效果不如
柱狀結構的聚焦效果。但是以3 維的聚焦特性來看,球狀結構在周期500 奈米的
條件下優於柱狀結構。因此,我們利用週期500 奈米的半球型光罩在近場曝光
下,可在光阻層產生2 層六角形的次波長周期結構。
zh_TW
dc.description.abstractWe develop a near-field photomask lithographic method to fabricate high quality
subwavelength patterns. This method uses edge-diffracted beams occur at the edges of
subwavelength dielectric structures. According to finite-difference time-domain (FDTD)
calculations and scanning near-field optical microscopy (NSOM) measurements, we find
that light passes such small air-dielectric structures, those edge-diffracted beams will
merge together at topographic higher regions and form subwavelength focused beams.
Based on this novel focusing effect, a new approach for mass-production of
subwavelength structures, especially the photonic bandgap (PBG) structures, is presented.
The accomplished ideas of this dissertation include four different photomask designs for
making subwavelength photolithographic patterns. Synopsis of these portions is as
follows:
(1) We develop a photolithographic approach to produce high aspect-ratio
hexagonal and square arrays. The photomask is composed of hexagonal or square rod
arrays with a thickness of 0.2μm and a rod size of 300nm. Illuminating the photomask
with a blue laser generates periodically focused beams up to 1μm long and less than
300nm wide. Due to higher symmetry, hexagonal rod arrays exhibit better focused beams
than the square ones.
(2) Most PBG based devices need some designed defect patterns existed in the
VI
PBG arrays. Using a transparent photomask with periodic arrays and designed defects,
we can fabricate subwavelength PBG structures with channel defects on the silicon
substrate. The NSOM measurements and FDTD calculations confirm that the
subwavelength focused beams are not affected by the neighboring defects in the
near-field region.
(3) We study a sub-100nm photolithographic approach by using TE-polarized wave
in the transparent nanostructures. The optical near-field and its polarization anisotropy in
transparent nano-structures are detected by a polarization near-field optical microscopy.
According to experimental results and FDTD calculations, localized optical near-fields
exist at topographic higher regions of nano-structures under TE polarized condition, while
less localized near-fields for TM mode. We experimentally show these localized fields can
produce photolithographic patterns with a feature size about 80nm by using a 442nm
helium cadmium laser. The resolution is smaller than λ/5, far below the diffraction limit.
(4) We study the geometrical effect for the subwavelength focusing beams. We
invented a new method to fabricate the close-packed submicron lens array with a feature
size close to optical diffraction limit. By controlling the size of rods in a nickel mask and
the time of reactive dry etching, hemispherical lens array with submicron period can be
directly made on a borosilicate glass. From NSOM measurements and FDTD calculations,
the lens array can also make subwavelength optical spots near the lens surface. Although
the focusing effect is not as good as in prior rod structures, the spots produced by the
submicron lens array show periodic patterns in the propagation direction. By harnessing
this optical property, 3D-PBG structures are possible to be made by the photolithographic
method. In this dissertation, we demonstrate the fabrication of multilayer hexagonal
structures with a period of 500nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:37:39Z (GMT). No. of bitstreams: 1
ntu-95-D89222025-1.pdf: 6618548 bytes, checksum: c4f1a102c4e9857c0e3dca09001e0fba (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………..I
致謝……………………………………………………………………………………….II
中文摘要…………………………………………………………………………………Ⅲ
Abstract………………………………………………………….……….........................Ⅴ
Contents ……………………………………………………...………………….………Ⅷ
List of Figures………………………………………………………………………….ⅩII
Chapter1 Introduction…………………………………………………………………...1
1.1 The Importance in Lithography ………………………………..….………………...1
1.2 The Problem in Lithography …………………………………...……………………2
1.3 Various Forms of Nanolithography ………………………….………………………4
1.3.1 Electron-Beam Lithography and Focused Ion-Beam Lithography………………4
1.3.2 Surface Plasmon Printing Lithography……………...……………………………6
1.3.3 Nanosphere Lithography……………………………...…………………………10
1.3.4 Soft Lithography……………………………………...…………………………12
1.3.5 Nanoimprint Lithography …………………………...…………………….……15
1.3.6 Interference Lithography and Holographic Lithography ….................................18
1.4 Why Do We Study Near-Field Photolithography? ...................................................21
Chapter2 Theoretical Background…………………………………………………….23
2.1 Diffraction Limit ……………………………………….………..........................…23
2.1.1 Problems in Breaking the Diffraction Limit ……………..…………………..…25
2.2 Physics of the Near-Field optics ……………………..………………………….…25
2.2.1 Hertzian Dipole…………………………………………………………….……25
2.2.2 Resolution Limits in Near-Field Scanning Microscopy ……………………..…29
2.3 Methods in Computational Electromagnetics………………...………………….…29
2.31 Methods Based on Simplified Wave Equations………...……………………..…30
2.32 FDTD Method ………………………………………………………...…………30
2.4 Concept of Photonic Crystal ………………………………………………….……36
Chapter 3 Experimental process………………………………………………………39
3.1 Edge-Diffraction Effect on Subwavelength Air-Dielectric Structures……………..39
3.2 Outline of Near-Field Photolithography ……………………………………….......43
3.3 Experimental E-Beam Lithography …………………………………………..……44
3.3.1 EBL Process……………………………………………………….……….……45
3.3.2 E-Beam Resists and Others Photoresist………….……..………………….....…46
3.4 Photomask and Sample Preparation……………………………………………...... 48
3.5 Experimental Process for Near-Field Photolithography………………………....…51
3.6 Techniques of Measurements………………………………………………....……53
3.6.1 Scanning Electron Microscopy SEM……………….………………………..….53
3.6.2 Near-Field Scanning Optical Microscopy (NSOM)……………………….……54
3.6.3 Experimental Setup for Collection-Mode NSOM……………………….……...61
Chapter 4 Generating Two-Dimensional Subwavelength Structures Using a
Near-Field Photolithographic Method…………………………………….63
4.1 Motivation……………………………………………………………….…….……63
4.2 Numerical Simulations……………………………………….………………… ….64
4.3 Near-Field Measurement Results……………………….…………………………..68
4.4 Photolithographic Results………………………………………………………..…68
Chapter 5 Fabrication of Photonic Bandgap (PBG) Structures with Designed
Defects by Edge Diffraction Lithography......................................................73
5.1 Motivation……………………………………………………………………….….73
5.2 Numerical Simulations……………………………………….…………………..…74
5.3 Near-Field Measurement Results……………………………………………...……79
5.4 Photolithographic Results……………………………………………………....…..82
Chapter 6 Sub-100nm Photolithography by Using TE-Polarized Waves in
Transparent Nano Structures……………………………………………...87
6.1 Motivation………………………………………………..……………………..…..87
6.2 Numerical Simulations………………………………..………………………….....89
6.3 Near-Field Measurement Results……………………………………………….…..92
6.4 Photolithographic Results…………………………………………………....……..95
Chapter 7 Fabrication of Close-Packed Hemispherical Submicron-Lens Array and
Its Application in Photolithography……………………………………...99
7.1 Motivation..................................................................................................................99
7.2 Fabrication of Submicron Lens Array......................................................................101
7.3 Calculations of Focusing Properties........................................................................105
7.4 Optical Near-Field Measurements……………………………..………………….108
7.5 Photolithographic Results………………………………….………………….…..109
Chapter 8 Conclusions………………………………………………………………...113
Bibliography…………………………………………………………………………...116
dc.language.isoen
dc.subject近場微影術zh_TW
dc.subject光子能隙結構zh_TW
dc.subject次微米透鏡陣列zh_TW
dc.subject近場光學顯微儀zh_TW
dc.subject有限時域差分法zh_TW
dc.subjectsubmicron lens arrayen
dc.subjectnear-field lithographic methoden
dc.subjectPBGen
dc.subjectFDTDen
dc.subjectNSOMen
dc.title光波在介電質奈米結構的聚焦特性與其在光罩製程上的應用zh_TW
dc.titleFocusing Properties of Optical Wave in Dielectric Nanostructures and Its Application in Photolithographyen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.coadvisor魏培坤(Pei-Kuen Wei)
dc.contributor.oralexamcommittee王維新(Way-Seen Wang),蔡定平(Din-Ping Tsai),張正陽(Jeng -Yang Chang),曾繁根(Fang-Gang Tseng)
dc.subject.keyword近場微影術,光子能隙結構,有限時域差分法,近場光學顯微儀,次微米透鏡陣列,zh_TW
dc.subject.keywordnear-field lithographic method,PBG,FDTD,NSOM,submicron lens array,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2007-01-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
6.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved