Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃銓珍(Chang-Jen Huang)
dc.contributor.authorYi-Ru Chenen
dc.contributor.author陳怡如zh_TW
dc.date.accessioned2021-06-13T02:35:50Z-
dc.date.available2011-08-03
dc.date.copyright2011-08-03
dc.date.issued2011
dc.date.submitted2011-08-01
dc.identifier.citationAllende ML, Amsterdam A, Becker T, Kawakami K, Gaiano N, Hopkins N (1996) Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Genes & development 10:3141-3155.
Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713-2724.
Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A 101:12792-12797.
Asakawa K, Kawakami K (2008) Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ 50:391-399.
Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105:1255-1260.
Atkinson PW, Warren WD, O'Brochta DA (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proceedings of the National Academy of Sciences of the United States of America 90:9693-9697.
Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5:62.
Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401-415.
Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Developmental biology 263:191-202.
Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007a) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811-824.
Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007b) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811-824.
Dodd A, Curtis PM, Williams LC, Love DR (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9:2443-2449.
Dorsky RI, Sheldahl LC, Moon RT (2002) A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241:229-237.
Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37-46.
Ellingsen S, Laplante MA, Konig M, Kikuta H, Furmanek T, Hoivik EA, Becker TS (2005) Large-scale enhancer detection in the zebrafish genome. Development 132:3799-3811.
Fadool JM, Hartl DL, Dowling JE (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proceedings of the National Academy of Sciences of the United States of America 95:5182-5186.
Folberg-Blum A, Sapir A, Shilo BZ, Oren M (2002) Overexpression of mouse Mdm2 induces developmental phenotypes in Drosophila. Oncogene 21:2413-2417.
Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135-140.
Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet 3:717-724.
Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1-36.
Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289-299.
Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501-510.
Kawabata K, Urasaki Y (2006) Simultaneous determination of azelnidipine and two metabolites in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B 844:45-52.
Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234:244-254.
Kawakami K, Kotani T, Nagayoshi S, Urasaki A (2006) Transposon-mediated gene trapping in zebrafish. Methods 39:199-206.
Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97:11403-11408.
Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133-144.
Knapik EW (2000) ENU mutagenesis in zebrafish--from genes to complex diseases. Mamm Genome 11:511-519.
Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233:329-346.
Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307-318.
Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666-669.
Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135:159-169.
Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11:478-483.
Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449-459.
Raz E, van Luenen HG, Schaerringer B, Plasterk RH, Driever W (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 8:82-88.
Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563-564.
Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Develop 80:153-158.
Scheer N, Groth A, Hans S, Campos-Ortega JA (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128:1099-1107.
Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007-1020.
Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293-296.
Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403-412.
Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174:639-649.
Wada H, Tanaka H, Nakayama S, Iwasaki M, Okamoto H (2006) Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 133:4749-4759.
Zars T, Fischer M, Schulz R, Heisenberg M (2000a) Localization of a short-term memory in Drosophila. Science 288:672-675.
Zars T, Wolf R, Davis R, Heisenberg M (2000b) Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learn Mem 7:18-31.
Zhang J, Talbot WS, Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92:241-251.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31207-
dc.description.abstract近年來斑馬魚已成為研究脊椎動物發育的一個重要模式生物。在過去果蠅發育基因功能的研究中,Gene trap和Enhancer trap方法是一個相當強大且被廣泛應用的工具。然而過去在脊椎動物系統上因缺乏有效率的基因轉殖技術,有很長一段時間這些方法無法被應用在斑馬魚相關研究上。一直到Tol2跳躍子的發現,結合Tol2隨機嵌入特性的Gene trap和Enhancer trap方法才被應用至斑馬魚上。藉由Tol2將這些載體帶入基因組的過程,可建立出許多具組織特異性GFP或Gal4表現的基因轉殖魚。另一方面,在果蠅上被廣泛採用的酵母菌Gal4-UAS轉錄活化系統也開始應用到斑馬魚上。受限於利用full-length Gal4構築的質體之轉殖基因表現量較低,這個系統經過後續研究的改良,發現以Gal4-VP16融合蛋白取代full-length Gal4可改善此情形。2007年Davison等人發表了一個結合Tol2,Gal4-UAS系統,gene trap和enhancer trap 的SAGVG基因轉殖載體。過去幾年本實驗室已成功地利用此SAGVG載體建立一系列在心臟、腦、眼睛、肌肉、血管、神經膠質、黑色素細胞、表皮細胞及神經軸突等具組織特異性Dendra2或DsRed表現的基因轉殖魚,本研究則從中挑選三組分別表現在中樞神經系統和血管的基因轉殖魚進行進一步的分析。
本研究的主要目的為分析SAGVG載體建立之基因轉殖魚,以鑑定其特殊螢光表現是受到哪些內生性基因的增強子或啟動子影響,並期望可以選殖出專一調控特定部位表現的啟動子。首先,利用Ligation-mediated PCR(LM-PCR)分別得到Tol2嵌入位周圍的斑馬魚基因組DNA片段,而後將這些片段定序並進行Ensembl斑馬魚基因組資料庫的比對,最後在斑馬魚染色體上定位出四個位於基因轉錄區以外的Tol2嵌入位。根據Davison提出的機制,初步推測SAGVG載體的特殊螢光表現是受到Tol2嵌入位附近具有相似表現位置的內生性基因增強子影響。接著利用zfin資料庫分析Tol2嵌入位上下游基因的表現位置,結果得到四個和基因轉殖魚有類似表現位置的預測基因。而後藉由全覆式原位雜合反應和顯微注射啟動子分析這四個預測基因的表現位置,以確認基因轉殖魚的螢光表現和預測基因表現是受到相同增強子的調控。此外,本研究也成功地利用此方法找到專一調控脊索(notochord)表現的組織特異性啟動子(tissue-specific promoter)。未來可利用此專一啟動子作為標定脊索的marker,以利日後斑馬魚胚胎發育的研究。
zh_TW
dc.description.abstractZebrafish has become an important model organism for studying vertebrate development. In the past, enhancer trap and gene trap methods are powerful tools in studying the gene functions of Drosophila. However, for a long period of time, these methods had not been applied to vertebrate systems mainly due to lack of an efficient transgenesis technique. It is not until the discovery of the Tol2 transposable element that the Tol2-mediated gene trap and enhancer trap methods were applied to zebrafish. By creating random insertions of these constructs in the genome, transgenic zebrafish expressing GFP or Gal4 proteins in specific cells, tissues or organs are generated. A bipartite yeast Gal4-UAS system being used in Drosophila to establish tissue-specific gene expression lines was tested in zebrafish as well. To achieve stronger inductions of a UAS transgene, a modified Gal4-VP16 fusion gene with stronger transcriptional activities was published to replace the full-length Gal4. In 2007, Davison et al demonstrated a Tol2 transposon-based Gal4-VP16;14xUAS:eGFP gene/enhancer trap construct called SAGVG. Based on this self-reporting construct, we successfully generated several transgenic zebrafish lines showing tissue-specific Dendra2 or DsRed fluorescent expressions in the heart, brain, eyes, muscle, blood vessel, glia, melanocyte, skin, and neuronal axon.
In this study, 3 transgenic lines with unique expressions in the CNS and blood vessel were selected for further analysis. The specific aim of this study is to identify the Tol2 insertions linked to Dendra2 or DsRed expression of the transgenic zebrafish created by SAGVG construct. Through this approach, we have a chance to discover novel tissue-specific promoters. By employing ligation-mediated polymerase chain reaction (LM-PCR) and DNA sequencing, we mapped 4 Tol2 insertions on the zebrafish chromosome. According to the potential mechanisms proposed by Dr. Davison, we suggested that the unique expression patterns of SAGVG construct is regulated by the enhancers of the endogenous genes because all of the Tol2 insertions are outside the transcribed region. On the other hand, by analyzing expression patterns of genes close to the Tol2 insertions with the zfin database, we obtained 4 predicted genes showing similar expression patterns to those of the transgenic zebrafish lines. Finally, analysis of the predicted genes by whole-mount in situ hybridization and promoter microinjection was carried out to further confirm that the Dendra2 or DsRed expressions are under control of the corresponding enhancer regulatory element. Moreover, we also obtained a notochord-specific promoter by using the Tol2-mediated gene/enhancer trap method. This promoter will be utilized as a notochord marker for future researches in zebrafish embryogenesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:35:50Z (GMT). No. of bitstreams: 1
ntu-100-R98b46030-1.pdf: 2357975 bytes, checksum: d6c2af7cbca86356aa75efb3b88d23ac (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝………………………………………………………………………………….... i
中文摘要………………………………………………………………….……….…. ii
英文摘要…………………………………………………………………………….. iv
章節目錄…………………………………………………………..…………...….… vi
圖表目錄…………………………………………………………..……………….. viii
壹 前言
一、利用誘導突變研究斑馬魚發育相關基因……………………………….....… 1
二、利用跳躍子作為重要的基因轉殖工具…………………….……...…….…… 2
三、Tol2的發現及應用…………………………………………………...……...… 3
四、Gal4-UAS System之發展 ………………………………………..…....……. 3
五、使用斑馬魚做為Gal4-UAS System之模式生物……………...………...….… 4
六、Gene trap和Enhancer trap作用機制…………...………………………....…… 6
七、研究目的及策略……………………………………………………...……..… 8
貳 實驗材料與方法
I、實驗材料……………………………………………………………...……….… 9
II、實驗方法
一、斑馬魚基因之選殖…………………………………..……..……...………… 10
二、短暫性表現分析(Transient expression assay)………………………….……. 15
三、斑馬魚胚胎之顯微注射………………………………………...…………… 17
四、螢光顯微鏡之使用以及觀察方式………………….……..…...……………. 18
五、影像攝取系統與圖片之後製………………..……………………....….…… 18
六、Ligation-mediated PCR(LM-PCR)…………………………………………… 19
七、全覆式原位雜合反應(Whole-mount in situ hybridization)……...………….. 22
參 實驗結果
一、增強子捕捉(Enhancer trap)載體設計………………………………...…...… 29
二、影響SAGVG-Dendra2-ET1螢光表現基因之鑑定…………......................... 29
三、影響SAGVG-Dendra2-ET4螢光表現基因之鑑定…………………...…...... 31
四、影響ET-507-2螢光表現基因之鑑定………………………………...……… 32
肆 討論
一、SAGVG載體於基因轉殖模式之優勢………………………….…...…….… 34
二、嵌入位置定位方法之比較………………………..………………...….….… 35
三、全覆式原位雜合反應結果的探討……………………….……..…...…….… 36
四、Gene/enhancer trap 機制和嵌入位向的探討……………….…...…..……… 36
五、Transient assay結果的探討…………………………..…………...…….…… 37
六、未來展望…………………………………………………………...………… 39
伍 參考文獻………………………………………………………...…...…...…… 41
dc.language.isozh-TW
dc.subject增強子捕捉zh_TW
dc.subject斑馬魚zh_TW
dc.subject跳躍子zh_TW
dc.subjectTol2en
dc.subjectenhancer trapen
dc.subjecttransposonen
dc.subjectzebrafishen
dc.title利用Tol2跳躍子所衍生增強子捕捉方法分析斑馬魚基因之表現zh_TW
dc.titleAnalysis of genes by the Tol2-mediated enhancer trap methods in zebrafishen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明亭,張茂山
dc.subject.keyword斑馬魚,增強子捕捉,跳躍子,zh_TW
dc.subject.keywordzebrafish,enhancer trap,transposon,Tol2,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved