請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31197完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王惠鈞(Andrew H.-J. Wang) | |
| dc.contributor.author | Rey-Ting Guo | en |
| dc.contributor.author | 郭瑞庭 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:35:15Z | - |
| dc.date.available | 2010-02-02 | |
| dc.date.copyright | 2007-02-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-22 | |
| dc.identifier.citation | 1. Ogura K, Koyama T, Sagami H: Polyprenyl diphosphate synthases. Subcell Biochem 1997, 28:57-87.
2. Sacchettini JC, Poulter CD: Creating isoprenoid diversity. Science 1997, 277:1788-1789. 3. Goodwin TW: Biosynthesis of carotenoids and plant triterpenes. Biochem J 1971, 123:293-329. 4. Matsuoka S, Sagami H, Kurisaki A, Ogura K: Variable product specificity of microsomal dehydrodolichyl diphosphate synthase from rat liver. J Biol Chem 1991, 266:3464-3468. 5. Ashby MN, Edwards PA: Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem 1990, 265:13157-13164. 6. Clarke S: Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 1992, 61:355-386. 7. Ogura K, Koyama T: Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev 1998, 98:1263-1276. 8. Kellogg BA, Poulter CD: Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1997, 1:570-578. 9. Gelb MH, Scholten JD, Sebolt-Leopold JS: Protein prenylation: from discovery to prospects for cancer treatment. Curr Opin Chem Biol 1998, 2:40-48. 10. Glomset JA, Farnsworth CC: Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol 1994, 10:181-205. 11. Dinsmore CJ, Bell IM: Inhibitors of farnesyltransferase and geranylgeranyltransferase-I for antitumor therapy: substrate-based design, conformational constraint and biological activity. Curr Top Med Chem 2003, 3:1075-1093. 12. Maurer-Stroh S, Washietl S, Eisenhaber F: Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol Chem 2003, 384:977-989. 13. Wendt KU, Poralla K, Schulz GE: Structure and function of a squalene cyclase. Science 1997, 277:1811-1815. 14. Rynkiewicz MJ, Cane DE, Christianson DW: Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A 2001, 98:13543-13548. 15. Cane DE, Sohng JK, Lamberson CR, Rudnicki SM, Wu Z, Lloyd MD, Oliver JS, Hubbard BR: Pentalenene synthase. Purification, molecular cloning, sequencing, and high-level expression in Escherichia coli of a terpenoid cyclase from Streptomyces UC5319. Biochemistry 1994, 33:5846-5857. 16. Cane DE, Chiu HT, Liang PH, Anderson KS: Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway. Biochemistry 1997, 36:8332-8339. 17. Back K, Chappell J: Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J Biol Chem 1995, 270:7375-7381. 18. Cane DE, Rawlings BJ, Yang CC: Isolation of (-)-gamma-cadinene and aristolochene from Aspergillus terreus. J Antibiot (Tokyo) 1987, 40:1331-1334. 19. Turunen M, Olsson J, Dallner G: Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004, 1660:171-199. 20. Suvarna K, Stevenson D, Meganathan R, Hudspeth ME: Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli. J Bacteriol 1998, 180:2782-2787. 21. Schledz M, Seidler A, Beyer P, Neuhaus G: A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 2001, 499:15-20. 22. Collakova E, DellaPenna D: Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 2001, 127:1113-1124. 23. Cress WA, Chayet LT, Rilling HC: Crystallization and partial characterization of dimethylallyl pyrophosphate: L-tryptophan dimethylallyltransferase from Claviceps sp. SD58. J Biol Chem 1981, 256:10917-10923. 24. Pojer F, Wemakor E, Kammerer B, Chen H, Walsh CT, Li SM, Heide L: CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc Natl Acad Sci U S A 2003, 100:2316-2321. 25. Edwards DJ, Gerwick WH: Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J Am Chem Soc 2004, 126:11432-11433. 26. Kuzuyama T, Noel JP, Richard SB: Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 2005, 435:983-987. 27. Hemmi H, Noike M, Nakayama T, Nishino T: An alternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. Eur J Biochem 2003, 270:2186-2194. 28. Jiang Y, Proteau P, Poulter D, Ferro-Novick S: BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae. J Biol Chem 1995, 270:21793-21799. 29. Chen A, Kroon PA, Poulter CD: Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci 1994, 3:600-607. 30. Kavanagh KL, Dunford JE, Bunkoczi G, Russell RG, Oppermann U: The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem 2006, 281:22004-22012. 31. Schulbach MC, Brennan PJ, Crick DC: Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem 2000, 275:22876-22881. 32. Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A: The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 1999, 19:471-483. 33. Oh SK, Han KH, Ryu SB, Kang H: Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J Biol Chem 2000, 275:18482-18488. 34. Cornish K: The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. Eur J Biochem 1993, 218:267-271. 35. Fujihashi M, Zhang YW, Higuchi Y, Li XY, Koyama T, Miki K: Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc Natl Acad Sci U S A 2001, 98:4337-4342. 36. Ko TP, Chen YK, Robinson H, Tsai PC, Gao YG, Chen AP, Wang AHJ, Liang PH: Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J Biol Chem 2001, 276:47474-47482. 37. Saderholm MJ, Hightower KE, Fierke CA: Role of metals in the reaction catalyzed by protein farnesyltransferase. Biochemistry 2000, 39:12398-12405. 38. Delmas PD: Treatment of postmenopausal osteoporosis. Lancet 2002, 359:2018-2026. 39. Langston AL, Ralston SH: Management of Paget's disease of bone. Rheumatology (Oxford) 2004, 43:955-959. 40. Berenson JR: Treatment of hypercalcemia of malignancy with bisphosphonates. Semin Oncol 2002, 29:12-18. 41. Coleman RE: Bisphosphonates: clinical experience. Oncologist 2004, 9 Suppl 4:14-27. 42. Fisher JE, Rodan GA, Reszka AA: In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology 2000, 141:4793-4796. 43. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC: Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000, 88:2961-2978. 44. Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ: Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 1998, 13:1668-1678. 45. Martin MB, Grimley JS, Lewis JC, Heath HT, 3rd, Bailey BN, Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, et al.: Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 2001, 44:909-916. 46. Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH: Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. J Biol Chem 2006, 281:14991-15000. 47. Guo RT, Ko TP, Chen AP, Kuo CJ, Wang AHJ, Liang PH: Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem 2005, 280:20762-20774. 48. Pan JJ, Chiou ST, Liang PH: Product distribution and pre-steady-state kinetic analysis of Escherichia coli undecaprenyl pyrophosphate synthase reaction. Biochemistry 2000, 39:10936-10942. 49. Hosfield DJ, Zhang Y, Dougan DR, Broun A, Tari LW, Swanson RV, Finn J: Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem 2004, 279:8526-8529. 50. Chen AP, Chen YH, Liu HP, Li YC, Chen CT, Liang PH: Synthesis and application of a fluorescent substrate analogue to study ligand interactions for undecaprenyl pyrophosphate synthase. J Am Chem Soc 2002, 124:15217-15224. 51. Otwinowski Z, Minor W: Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology 1997, 276:307-326. 52. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, et al.: Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998, 54:905-921. 53. Barton GJ: ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng 1993, 6:37-40. 54. Kraulis PJ: MOLSCRIPT: A Program to Produce Both Detailed and Schematic Plots of Protein Structures. . Journal of Applied Crystallography 1991, 24:946-950. 55. Esnouf RM: An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model 1997, 15:132-134, 112-133. 56. Merritt EA, Murphy ME: Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr 1994, 50:869-873. 57. Brunger AT: Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr 1993, 49:24-36. 58. Kloer DP, Welsch R, Beyer P, Schulz GE: Structure and Reaction Geometry of Geranylgeranyl Diphosphate Synthase from Sinapis alba(,). Biochemistry 2006, 45:15197-15204. 59. Tarshis LC, Yan M, Poulter CD, Sacchettini JC: Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 1994, 33:10871-10877. 60. Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AHJ: Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem 2004, 279:4903-4912. 61. Sun HY, Ko TP, Kuo CJ, Guo RT, Chou CC, Liang PH, Wang AHJ: Homodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon Sulfolobus solfataricus displays asymmetric subunit structures. J Bacteriol 2005, 187:8137-8148. 62. Gabelli SB, McLellan JS, Montalvetti A, Oldfield E, Docampo R, Amzel LM: Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: implications for drug design. Proteins 2006, 62:80-88. 63. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U: The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci U S A 2006, 103:7829-7834. 64. Rondeau JM, Bitsch F, Bourgier E, Geiser M, Hemmig R, Kroemer M, Lehmann S, Ramage P, Rieffel S, Strauss A, et al.: Structural Basis for the Exceptional in vivo Efficacy of Bisphosphonate Drugs. ChemMedChem 2006, 1:267-273. 65. Chang SY, Ko TP, Chen AP, Wang AHJ, Liang PH: Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. Protein Sci 2004, 13:971-978. 66. Chang SY, Ko TP, Liang PH, Wang AHJ: Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and triton. J Biol Chem 2003, 278:29298-29307. 67. Poulter C. D. & Rilling HC: Prenyl transferase and isomerase. Biosynthesis of isoprenoid compounds (Spurgeon, SL, R., ed.) 1981, 1:161-224. 68. Guo RT, Kuo CJ, Ko TP, Chou CC, Liang PH, Wang AHJ: A molecular ruler for chain elongation catalyzed by octaprenyl pyrophosphate synthase and its structure-based engineering to produce unprecedented long chain trans-prenyl products. Biochemistry 2004, 43:7678-7686. 69. Szabo CM, Matsumura Y, Fukura S, Martin MB, Sanders JM, Sengupta S, Cieslak JA, Loftus TC, Lea CR, Lee HJ, et al.: Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates and diphosphates: a potential route to new bone antiresorption and antiparasitic agents. J Med Chem 2002, 45:2185-2196. 70. McTaggart SJ: Isoprenylated proteins. Cell Mol Life Sci 2006, 63:255-267. 71. Lazar K, Walker S: Substrate analogues to study cell-wall biosynthesis and its inhibition. Curr Opin Chem Biol 2002, 6:786-793. 72. Russell RG: Bisphosphonates: from bench to bedside. Ann N Y Acad Sci 2006, 1068:367-401. 73. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31197 | - |
| dc.description.abstract | 類異戊二烯族 (isoprenoid) 為廣泛分布於自然界中的化合物,是由異戊二烯轉移酵素 (prenyltransferase) 催化異戊二烯焦磷酸 (isopentenyl pyrophosphate) 為合成骨架所構成的聚合物。其中一類的酵素催化含多個異戊二烯焦磷酸 (5個碳) 和法呢基焦磷酸 (15個碳) 結合生成長鏈產物,並依生成產物之立體結構命名為反式 (trans-) 或順式 (cis-) 類異戊二烯轉移酵素。本論文中所研究的反式酵素為酵母菌第三型-四異戊二烯焦磷酸合成酶 (geranylgeranyl pyrophosphate synthase),產物是四異戊二烯化 (geranylgeranylated) 蛋白質、胡蘿蔔素 (carotenoid)、細胞膜脂質等等…這些在生物體內重要分子的前趨物。
而在本論文中所研究的順式酵素為大腸桿菌的十一異戊二烯焦磷酸合成酶 (undecaprenyl pyrophosphate synthase),產生的 55 個碳的十一異戊二烯焦磷酸 (undecaprenyl pyrophosphate) 可攜帶醣質以合成細菌的細胞壁 (cell wall),對細菌的存活非常的重要,也因此許多藥廠針對發展此酵素之抑制劑來做為新型的抗生素藥物的研發目標。 藉由不同的類異戊二烯轉移酶,可以合成出不同長度的直鏈產物,並在生物體內皆扮演不同的生理角色,因此這一類的酵素必須非常精準地調控其直鏈產物的長短,而比較這些合成不同長度的酵素的三度空間結構將有助於我們了解這一類酵素調控產物長短的機制。因此,我們之前也解出並發表了合成 40 個碳的反式長鏈產物的八異戊二烯焦磷酸合成酶 (octaprenyl pyrophosphate synthase) 的 X 光晶體結構,分析此酵素的三度空間結構後,我們發現在活性區下有一空洞可供產物生成,我們並確認了在空洞下方的苯丙胺酸 (Phe132) 為決定鏈長最重要的胺基酸,若再將空洞往下會遇到的大的胺基酸 (Leu128, Ile123 及 Asp62) 改成小的胺基酸 (Ala),則產物甚至可達到 95 個碳的長度。 而比較反式和順式的酵素的胺基酸序列,可以了解到這兩種酵素是分屬完全不同的兩種酵素,雖然在催化反應進行時,反式及順式酵素需要同樣的受質 (異戊二烯焦磷酸 (IPP) 和法呢基焦磷酸 (FPP) 以及二價鎂離子),但是這兩種酵素所使用的催化活性區卻是完全不同的。為了完全了解這兩種酵素在催化機制上的差異,因此我們將催化反應需要的受質 (異戊二烯焦磷酸 (IPP) 和法呢基焦磷酸 (FPP) 以及二價鎂離子) 以浸泡或共結晶的方式,因而得到酵母菌第三型-四異戊二烯焦磷酸合成酶及大腸桿菌十一異戊二烯焦磷酸合成酶和這些受質的複合結構,並得以了解反式及順式酵素之間的異同。 在抑制劑的研究方面,我們和美國伊利諾大學 Eric Oldfield 教授合作,Oldfield 教授是致力發展新型雙磷酸鹽類 (Bisphosphonates) 的專家學者,雙磷酸鹽類的結構和焦磷酸鹽類 (Pyrophosphates) 極為相似,其結構中之PCP基團為其生物活性骨架,是與氫氧磷灰石 (Hydroxyapatite) 鍵結所必須之結構基團,對骨骼具有強烈親和力。目前臨床上除了骨質疏鬆症外,惡性腫瘤骨轉移 (以前列腺癌、乳癌和肺炎最常見) 及高血鈣也常使用雙磷酸鹽類。在本篇論文中,我們解出 5 個新型雙磷酸鹽類和酵母菌第三型-四異戊二烯焦磷酸合成酶的複合結構,及 5 個新型雙磷酸鹽類和十一異戊二烯焦磷酸合成酶的複合結構,而分析這些雙磷酸鹽類和反式、順式酵素的三度空間結構,可發現許多有趣的鍵結模式,這些結構上的資訊也將提供我們許多設計新型藥物或抗生素的寶貴經驗。 | zh_TW |
| dc.description.abstract | Over 23000 compounds constitute an important family of natural products named isoprenoids, which are built on the 5-carbon isopentenyl pyrophosphate (IPP). Isoprenyl pyrophosphate synthases (IPPs) involved in the biosynthesis of the linear isoprenoid polymers each catalyzes consecutive condensation reactions of a designated number of isopentenyl pyrophosphate (IPP) with a single farnesyl pyrophosphate (FPP). These enzymes are named trans- or cis-prenyltransferases according to the stereochemistry of the double bonds from IPP condensation.
Among trans-prenyltransferases, geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate (FPP) with an isopentenyl pyrophosphate (IPP) to generate C20 geranylgeranyl pyrophosphate (GGPP), a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether linked lipid. In this study, we solved 6 crystal structures of S. cerevisiae GGPPs in complex with substrate FPP, with IPP and the substrate analog farnesyl thiopyrophosphate (FsPP), alternative substrate GPP, and product GGPP. Unlike in FPP synthase where the third Mg2+ ion coordinated by the second DDxxD motif participates in the substrate binding, only two Mg2+ ions are observed in S. cerevisiae GGPPs. IPP is bound in a positively-charged pocket with Arg39, His68, Arg85 and Tyr205. From the binding mode of the product GGPP, the pyrophosphate of GGPP binds to the IPP pyrophosphate binding site and the hydrocarbon moiety sits in the FPP hydrocarbon binding site. The binding mode for GGPP in yeast GGPPs structure is distinct from that of the product in the proposed inhibitory site of human GGPPs. Bisphosphonate drugs used for osteoclast-mediated bone resorption and tumor-induced hypercalcemia are potent inhibitors of farnesyl pyrophosphate synthase (FPPs). Both FPP and GGPP are essential ligands for posttranslational modification of small GTPases such as Ras, Rac, and Rho for their biological functions. To design specific inhibitors for GGPPs, we have solved five S. cerevisiae GGPPs-bisphosphonates complex structures in this thesis (These bisphosphonates are kindly provided by Prof. Eric Oldfield). Unlike the previous finding that bisphosphonate inhibitors bind to the essential Mg2+ ions in the FPPs active site, these inhibitors also bind to GGPPs, but not necessary with Mg2+ ion. The bisphosphonates can bind to GGPPs in the FPP site, IPP site and/or the product feedback inhibitory site. Moreover, particular bisphosphonates with hydrophobic moiety bind to undecaprenyl pyrophosphate synthase, which is a cis-prenyltrasnferase and catalyzes chain elongation of FPP by condensation with 8 IPP to form C55 product as lipid carrier for bacterial peptidoglycan biosynthesis. Cis-prenytransferases share no sequence homology and structural similarity with the trans-enzymes. In each of the five structures investigated, we found that there were up to four binding sites per monomer. Three of the binding sites occupy the top of a “funnel” region, while the fourth site is situated at the bottom of the funnel. One inhibitor molecule occupies the FPP substrate binding site and none competes with IPP binding. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:35:15Z (GMT). No. of bitstreams: 1 ntu-96-D92b46017-1.pdf: 11964617 bytes, checksum: 770351ee70d24043fd772f7092ab3a58 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌 謝 I
中文摘要 IV ABSTRACT VI LIST OF TABLES VIII LIST OF FIGURES IX ABBREVIATIONS XI 1. INTRODUCTION 1 1.1 Isoprenoids 1 1.2 Classification of prenyltransferases 1 1.3 Trans-type prenyltransferases: geranylgeranyl pyrophosphate synthase (GGPPs) 3 1.4 Cis-type prenyltransferases: undecaprenyl pyrophosphate synthase (UPPs) 4 1.5 Bisphosphonates 5 1.6 Specific aims 6 2. MATERIAL AND METHODS 8 2.1 S. cerevisiae geranylgeranyl pyrophosphate synthase (GGPPs) 8 2.1.1 Chemicals 8 2.1.2 S. cerevisiae GGPPs protein expression and purification 8 2.1.3 Crystallization and data collection of S. cerevisiae GGPPs 9 2.1.4 Structure determination and refinement of S. cerevisiae GGPPs 10 2.2 E. coli undecaprenyl pyrophosphate synthase (UPPs) 11 2.2.1 E. coli UPPs protein expression and purification 11 2.2.2 Crystallization and data collection of E. coli UPPs 12 2.2.3 Structure determination and refinement of E. coli UPPs 13 3. RESULTS 14 3.1 S. cerevisiae geranylgeranyl pyrophosphate synthase (GGPPs) 14 3.1.1 Overall structures of S. cerevisiae GGPPs in complex with ligands 14 3.1.2 Binding modes of different ligands 14 3.1.3 Mechanism of product chain length determination deduced from the complex structures 15 3.1.4 Open and closed forms 16 3.1.5 Structural differences among three types of GGPPs 16 3.1.6 Comparison of the product location in human and S. cerevisiae GGPPs 17 3.1.7 Complex structures of GGPPs with inhibitors 18 3.2 E. coli undecaprenyl pyrophosphate synthase (UPPs) 20 3.2.1 Crystal structures of E. coli UPPs in complex with bisphosphonates 20 4. DISCUSSION 23 4.1 S. cerevisiae GGPPs-substrates, and –product complex structures 23 4.2 S. cerevisiae GGPPs and E. coli UPPs-bisphosphonates complex structures 26 5. REFERENCES 73 LIST OF PUBLICATION 79 | |
| dc.language.iso | en | |
| dc.subject | 類異戊二烯 | zh_TW |
| dc.subject | 抗生素 | zh_TW |
| dc.subject | 同步輻射 | zh_TW |
| dc.subject | 蛋白質結構 | zh_TW |
| dc.subject | isoprenoid | en |
| dc.subject | antibiotic | en |
| dc.subject | synchrotron radition | en |
| dc.subject | protein structure | en |
| dc.title | 酵母菌四異戊二烯焦磷酸合成酶及大腸桿菌十一異戊二烯焦磷酸合成酶之三度空間結構及反應機制之研究 | zh_TW |
| dc.title | Structural Study of Geranylgeranyl Pyrophosphate Synthase from S. cerevisiae and Undecaprenyl Pyrophosphate Synthase from E. coli | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蕭傳鐙(Chwan-Deng Hsiao),梁博煌(Po-Huang Liang),陳佩燁(Rita P.-Y. Chen),馬徹(Che Ma) | |
| dc.subject.keyword | 類異戊二烯,蛋白質結構,同步輻射,抗生素, | zh_TW |
| dc.subject.keyword | isoprenoid,protein structure,synchrotron radition,antibiotic, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 11.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
